43 research outputs found

    Consensus recommendations for mrd testing in adult b-cell acute lymphoblastic leukemia in ontario

    Get PDF
    Measurable (minimal) residual disease (MRD) is an established, key prognostic factor in adult B-cell acute lymphoblastic leukemia (B-ALL), and testing for MRD is known to be an important tool to help guide treatment decisions. The clinical value of MRD testing depends on the accuracy and reliability of results. Currently, there are no Canadian provincial or national guidelines for MRD testing in adult B-ALL, and consistent with the absence of such guidelines, there is no uniform Ontario MRD testing consensus. Moreover, there is great variability in Ontario in MRD testing with respect to where, when, and by which technique, MRD testing is performed, as well as in how the results are interpreted. To address these deficiencies, an expert multidisciplinary working group was convened to define consensus recommendations for improving the provision of such testing. The expert panel recommends that MRD testing should be implemented in a centralized manner to ensure expertise and accuracy in testing for this low volume indication, thereby to provide accurate, reliable results to clinicians and patients. All adult patients with B-ALL should receive MRD testing after induction chemotherapy. Philadelphia chromosome (Ph)-positive patients should have ongoing monitoring of MRD during treatment and thereafter, while samples from Ph-negative B-ALL patients should be tested at least once later during treatment, ideally at 12 to 16 weeks after treatment initiation. In Ph-negative adult B-ALL patients, standardized, ideally centralized, protocols must be used for MRD testing, including both flow cytometry and immunoglobulin (Ig) heavy chain and T-cell receptor (TCR) gene rearrangement analysis. For Ph-positive B-ALL patients, MRD testing using a standardized protocol for reverse transcription real-time quantitative PCR (RT-qPCR) for the BCR-ABL1 gene fusion transcript is recommended, with Ig/TCR gene rearrangement analysis done in parallel likely providing additional clinical information

    Inter-laboratory proficiency testing scheme for tumour next-generation sequencing in Ontario: A pilot study

    Get PDF
    Background A pilot inter-laboratory proficiency scheme for 5 Ontario clinical laboratories testing tumour samples for the Ontario-wide Cancer Targeted Nucleic Acid Evaluation (OCTANE) study was undertaken to assess proficiency in the identification and reporting of next-generation sequencing (NGS) test results in solid tumour testing from archival formalin-fixed, paraffin-embedded (FFPE) tissue. Methods One laboratory served as the reference centre and provided samples to 4 participating laboratories. An analyte-based approach was applied: each participating laboratory received 10 FFPE tissue specimens profiled at the reference centre, with tumour site and histology provided. Laboratories performed testing per their standard NGS tumour test protocols. Items returned for assessment included genes and variants that would be typically reported in routine clinical testing and variant call format (VCF) files to allow for assessment of NGS technical quality. Results Two main aspects were assessed: Technical quality and accuracy of identification of exonic variants Site-specific reporting practices Technical assessment included evaluation of exonic variant identification, quality assessment of the VCF files to evaluate base calling, variant allele frequency, and depth of coverage for all exonic variants. Concordance at 100% was observed from all sites in the technical identification of 98 exonic variants across the 10 cases. Variability between laboratories in the choice of variants considered clinically reportable was significant. Of the 38 variants reported as clinically relevant by at least 1 site, only 3 variants were concordantly reported by all participating centres as clinically relevant. Conclusions Although excellent technical concordance for NGS tumour profiling was observed across participating institutions, differences in the reporting of clinically relevant variants were observed, highlighting reporting as a gap where consensus on the part of Ontario laboratories is needed

    A Pan-Canadian Validation Study for the Detection of EGFR T790M Mutation Using Circulating Tumor DNA From Peripheral Blood

    Get PDF
    Introduction: Genotyping circulating tumor DNA (ctDNA) is a promising noninvasive clinical tool to identify the EGFR T790M resistance mutation in patients with advanced NSCLC with resistance to EGFR inhibitors. To facilitate standardization and clinical adoption of ctDNA testing across Canada, we developed a 2-phase multicenter study to standardize T790M mutation detection using plasma ctDNA testing. Methods: In phase 1, commercial reference standards were distributed to participating clinical laboratories, to use their existing platforms for mutation detection. Baseline performance characteristics were established using known and blinded engineered plasma samples spiked with predetermined concentrations of T790M, L858R, and exon 19 deletion variants. In phase II, peripheral blood collected from local patients with known EGFR activating mutations and progressing on treatment were assayed for the presence of EGFR variants and concordance with a clinically validated test at the reference laboratory. Results: All laboratories in phase 1 detected the variants at 0.5 % and 5.0 % allele frequencies, with no false positives. In phase 2, the concordance with the reference laboratory for detection of both the primary and resistance mutation was high, with next-generation sequencing and droplet digital polymerase chain reaction exhibiting the best overall concordance. Data also suggested that the ability to detect mutations at clinically relevant limits of detection is generally not platform-specific, but rather impacted by laboratory-specific practices. Conclusions: Discrepancies among sending laboratories using the same assay suggest that laboratory-specific practices may impact performance. In addition, a negative or inconclusive ctDNA test should be followed by tumor testing when possible

    Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model

    Full text link
    Background: The multifactorial risk prediction model BOADI-CEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component -the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA.Methods: The mean, SD, and proportion of the overall polygenic component explained by the PRS (a2) need to be estimated. a was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component.Results: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and imple-mentation studies. The logistic regression approach underestimates a, as compared with the RL estimates. The RL a estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean.Conclusions: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model.Impact : The methods described facilitate comprehensive breast cancer risk assessment

    The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position statement of the Canadian College of medical geneticists

    Get PDF
    Purpose and scope: The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Methods of statement development: Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Results and conclusions: Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely reevaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally

    Association of Circulating Tumor DNA Testing Before Tissue Diagnosis With Time to Treatment Among Patients With Suspected Advanced Lung Cancer: The ACCELERATE Nonrandomized Clinical Trial.

    Get PDF
    IMPORTANCE Liquid biopsy has emerged as a complement to tumor tissue profiling for advanced non-small cell lung cancer (NSCLC). The optimal way to integrate liquid biopsy into the diagnostic algorithm for patients with newly diagnosed advanced NSCLC remains unclear. OBJECTIVE To evaluate the use of circulating tumor DNA (ctDNA) genotyping before tissue diagnosis among patients with suspected advanced NSCLC and its association with time to treatment. DESIGN, SETTING, AND PARTICIPANTS This single-group nonrandomized clinical trial was conducted among 150 patients at the Princess Margaret Cancer Centre-University Health Network (Toronto, Ontario, Canada) between July 1, 2021, and November 30, 2022. Patients referred for investigation and diagnosis of lung cancer were eligible if they had radiologic evidence of advanced lung cancer prior to a tissue diagnosis. INTERVENTIONS Patients underwent plasma ctDNA testing with a next-generation sequencing (NGS) assay before lung cancer diagnosis. Diagnostic biopsy and tissue NGS were performed per standard of care. MAIN OUTCOME AND MEASURES The primary end point was time from referral to treatment initiation among patients with advanced nonsquamous NSCLC using ctDNA testing before diagnosis (ACCELERATE [Accelerating Lung Cancer Diagnosis Through Liquid Biopsy] cohort). This cohort was compared with a reference cohort using standard tissue genotyping after tissue diagnosis. RESULTS Of the 150 patients (median age at diagnosis, 68 years [range, 33-91 years]; 80 men [53%]) enrolled, 90 (60%) had advanced nonsquamous NSCLC. The median time to treatment was 39 days (IQR, 27-52 days) for the ACCELERATE cohort vs 62 days (IQR, 44-82 days) for the reference cohort (P < .001). Among the ACCELERATE cohort, the median turnaround time from sample collection to genotyping results was 7 days (IQR, 6-9 days) for plasma and 23 days (IQR, 18-28 days) for tissue NGS (P < .001). Of the 90 patients with advanced nonsquamous NSCLC, 21 (23%) started targeted therapy before tissue NGS results were available, and 11 (12%) had actionable alterations identified only through plasma testing. CONCLUSIONS AND RELEVANCE This nonrandomized clinical trial found that the use of plasma ctDNA genotyping before tissue diagnosis among patients with suspected advanced NSCLC was associated with accelerated time to treatment compared with a reference cohort undergoing standard tissue testing. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04863924

    Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I).

    Get PDF
    Early detection of breast cancer through screening reduces breast cancer mortality. The benefits of screening must also be considered within the context of potential harms (e.g., false positives, overdiagnosis). Furthermore, while breast cancer risk is highly variable within the population, most screening programs use age to determine eligibility. A risk-based approach is expected to improve the benefit-harm ratio of breast cancer screening programs. The PERSPECTIVE I&I (Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation) project seeks to improve personalized risk assessment to allow for a cost-effective, population-based approach to risk-based screening and determine best practices for implementation in Canada. This commentary describes the four inter-related activities that comprise the PERSPECTIVE I&I project. 1: Identification and validation of novel moderate to high-risk susceptibility genes. 2: Improvement, validation, and adaptation of a risk prediction web-tool for the Canadian context. 3: Development and piloting of a socio-ethical framework to support implementation of risk-based breast cancer screening. 4: Economic analysis to optimize the implementation of risk-based screening. Risk-based screening and prevention is expected to benefit all women, empowering them to work with their healthcare provider to make informed decisions about screening and prevention

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore