11 research outputs found

    Non-classical mechanical states guided in a phononic waveguide

    Full text link
    The ability to create, manipulate and detect non-classical states of light has been key for many recent achievements in quantum physics and for developing quantum technologies. Achieving the same level of control over phonons, the quanta of vibrations, could have a similar impact, in particular on the fields of quantum sensing and quantum information processing. Here we present a crucial step towards this level of control and realize a single-mode waveguide for individual phonons in a suspended silicon micro-structure. We use a cavity-waveguide architecture, where the cavity is used as a source and detector for the mechanical excitations, while the waveguide has a free standing end in order to reflect the phonons. This enables us to observe multiple round-trips of the phonons between the source and the reflector. The long mechanical lifetime of almost 100 ÎĽs\mu s demonstrates the possibility of nearly lossless transmission of single phonons over, in principle, tens of centimeters. Our experiment demonstrates full on-chip control over traveling single phonons strongly confined in the directions transverse to the propagation axis, potentially enabling a time-encoded multimode quantum memory at telecom wavelength and advanced quantum acoustics experiments

    Ultra-low-noise Microwave to Optics Conversion in Gallium Phosphide

    Full text link
    Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains due to their high quality factors. Nevertheless, the optical pump required to overcome the large energy difference between the frequencies can add significant noise to the transduced signal. Here we exploit the remarkable properties of thin-film gallium phosphide to demonstrate on-chip microwave-to-optical conversion, realised by piezoelectric actuation of a Gigahertz-frequency optomechanical resonator. The large optomechanical coupling and the suppression of two-photon absorption in the material allows us to operate the device at optomechanical cooperativities greatly exceeding one, and, when using a pulsed upconversion pump, induce less than one thermal noise phonon. We include a high-impedance on-chip matching resonator to mediate the mechanical load with the 50-Ohm source. Our results establish gallium phosphide as a versatile platform for ultra-low-noise conversion of photons between microwave and optical frequencies

    Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate

    Full text link
    Conversion between signals in the microwave and optical domains is of great interest both for classical telecommunication, as well as for connecting future superconducting quantum computers into a global quantum network. For quantum applications, the conversion has to be both efficient, as well as operate in a regime of minimal added classical noise. While efficient conversion has been demonstrated using mechanical transducers, they have so far all operated with a substantial thermal noise background. Here, we overcome this limitation and demonstrate coherent conversion between GHz microwave signals and the optical telecom band with a thermal background of less than one phonon. We use an integrated, on-chip electro-opto-mechanical device that couples surface acoustic waves driven by a resonant microwave signal to an optomechanical crystal featuring a 2.7 GHz mechanical mode. We initialize the mechanical mode in its quantum groundstate, which allows us to perform the transduction process with minimal added thermal noise, while maintaining an optomechanical cooperativity >1, so that microwave photons mapped into the mechanical resonator are effectively upconverted to the optical domain. We further verify the preservation of the coherence of the microwave signal throughout the transduction process

    Dataset for An integrated microwave-to-optics interface for scalable quantum computing

    No full text
    Source data for figures

    Cricket

    No full text

    On-chip distribution of quantum information using traveling phonons

    Get PDF
    Distributing quantum entanglement on a chip is a crucial step toward realizing scalable quantum processors. Using traveling phonons-quantized guided mechanical wave packets-as a medium to transmit quantum states is now gaining substantial attention due to their small size and low propagation speed compared to other carriers, such as electrons or photons. Moreover, phonons are highly promising candidates to connect heterogeneous quantum systems on a chip, such as microwave and optical photons for long-distance transmission of quantum states via optical fibers. Here, we experimentally demonstrate the feasibility of distributing quantum information using phonons by realizing quantum entanglement between two traveling phonons and creating a time-bin-encoded traveling phononic qubit. The mechanical quantum state is generated in an optomechanical cavity and then launched into a phononic waveguide in which it propagates for around 200 micrometers. We further show how the phononic, together with a photonic qubit, can be used to violate a Bell-type inequality.QN/Groeblacher LabQN/Quantum Nanoscienc

    Ultra-low-noise microwave to optics conversion in gallium phosphide

    No full text
    Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains due to their high quality factors. Nevertheless, the optical pump required to overcome the large energy difference between the frequencies can add significant noise to the transduced signal. Here we exploit the remarkable properties of thin-film gallium phosphide to demonstrate bi-directional on-chip conversion between microwave and optical frequencies, realized by piezoelectric actuation of a Gigahertz-frequency optomechanical resonator. The large optomechanical coupling and the suppression of two-photon absorption in the material allows us to operate the device at optomechanical cooperativities greatly exceeding one. Alternatively, when using a pulsed upconversion pump, we demonstrate that we induce less than one thermal noise phonon. We include a high-impedance on-chip matching resonator to mediate the mechanical load with the 50-Ω source. Our results establish gallium phosphide as a versatile platform for ultra-low-noise conversion of photons between microwave and optical frequencies.QN/Groeblacher La
    corecore