118 research outputs found
Linear filtering reveals false negatives in species interaction data
Species interaction datasets, often represented as sparse matrices, are usually collected through observation studies targeted at identifying species interactions. Due to the extensive required sampling effort, species interaction datasets usually contain many false negatives, often leading to bias in derived descriptors. We show that a simple linear filter can be used to detect false negatives by scoring interactions based on the structure of the interaction matrices. On 180 different datasets of various sizes, sparsities and ecological interaction types, we found that on average in about 75% of the cases, a false negative interaction got a higher score than a true negative interaction. Furthermore, we show that this filter is very robust, even when the interaction matrix contains a very large number of false negatives. Our results demonstrate that unobserved interactions can be detected in species interaction datasets, even without resorting to information about the species involved
Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models
Many complex multi-target prediction problems that concern large target
spaces are characterised by a need for efficient prediction strategies that
avoid the computation of predictions for all targets explicitly. Examples of
such problems emerge in several subfields of machine learning, such as
collaborative filtering, multi-label classification, dyadic prediction and
biological network inference. In this article we analyse efficient and exact
algorithms for computing the top- predictions in the above problem settings,
using a general class of models that we refer to as separable linear relational
models. We show how to use those inference algorithms, which are modifications
of well-known information retrieval methods, in a variety of machine learning
settings. Furthermore, we study the possibility of scoring items incompletely,
while still retaining an exact top-K retrieval. Experimental results in several
application domains reveal that the so-called threshold algorithm is very
scalable, performing often many orders of magnitude more efficiently than the
naive approach
A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression
Many machine learning problems can be formulated as predicting labels for a
pair of objects. Problems of that kind are often referred to as pairwise
learning, dyadic prediction or network inference problems. During the last
decade kernel methods have played a dominant role in pairwise learning. They
still obtain a state-of-the-art predictive performance, but a theoretical
analysis of their behavior has been underexplored in the machine learning
literature.
In this work we review and unify existing kernel-based algorithms that are
commonly used in different pairwise learning settings, ranging from matrix
filtering to zero-shot learning. To this end, we focus on closed-form efficient
instantiations of Kronecker kernel ridge regression. We show that independent
task kernel ridge regression, two-step kernel ridge regression and a linear
matrix filter arise naturally as a special case of Kronecker kernel ridge
regression, implying that all these methods implicitly minimize a squared loss.
In addition, we analyze universality, consistency and spectral filtering
properties. Our theoretical results provide valuable insights in assessing the
advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427
Efficient Regularized Least-Squares Algorithms for Conditional Ranking on Relational Data
In domains like bioinformatics, information retrieval and social network
analysis, one can find learning tasks where the goal consists of inferring a
ranking of objects, conditioned on a particular target object. We present a
general kernel framework for learning conditional rankings from various types
of relational data, where rankings can be conditioned on unseen data objects.
We propose efficient algorithms for conditional ranking by optimizing squared
regression and ranking loss functions. We show theoretically, that learning
with the ranking loss is likely to generalize better than with the regression
loss. Further, we prove that symmetry or reciprocity properties of relations
can be efficiently enforced in the learned models. Experiments on synthetic and
real-world data illustrate that the proposed methods deliver state-of-the-art
performance in terms of predictive power and computational efficiency.
Moreover, we also show empirically that incorporating symmetry or reciprocity
properties can improve the generalization performance
Algebraic shortcuts for leave-one-out cross-validation in supervised network inference
Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such as protein-ligand interaction, protein-protein interaction and gene regulatory networks. Many supervised techniques for network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the original network. This distinction matters because (i) the performance might dramatically differ between the prediction settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest. Specific cross-validation schemes need to be used to assess the performance in such different prediction settings. In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows computational biologists to fully assess the capabilities of their models
A kernel-based framework for learning graded relations from data
Driven by a large number of potential applications in areas like
bioinformatics, information retrieval and social network analysis, the problem
setting of inferring relations between pairs of data objects has recently been
investigated quite intensively in the machine learning community. To this end,
current approaches typically consider datasets containing crisp relations, so
that standard classification methods can be adopted. However, relations between
objects like similarities and preferences are often expressed in a graded
manner in real-world applications. A general kernel-based framework for
learning relations from data is introduced here. It extends existing approaches
because both crisp and graded relations are considered, and it unifies existing
approaches because different types of graded relations can be modeled,
including symmetric and reciprocal relations. This framework establishes
important links between recent developments in fuzzy set theory and machine
learning. Its usefulness is demonstrated through various experiments on
synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Identification of functionally related enzymes by learning-to-rank methods
Enzyme sequences and structures are routinely used in the biological sciences
as queries to search for functionally related enzymes in online databases. To
this end, one usually departs from some notion of similarity, comparing two
enzymes by looking for correspondences in their sequences, structures or
surfaces. For a given query, the search operation results in a ranking of the
enzymes in the database, from very similar to dissimilar enzymes, while
information about the biological function of annotated database enzymes is
ignored.
In this work we show that rankings of that kind can be substantially improved
by applying kernel-based learning algorithms. This approach enables the
detection of statistical dependencies between similarities of the active cleft
and the biological function of annotated enzymes. This is in contrast to
search-based approaches, which do not take annotated training data into
account. Similarity measures based on the active cleft are known to outperform
sequence-based or structure-based measures under certain conditions. We
consider the Enzyme Commission (EC) classification hierarchy for obtaining
annotated enzymes during the training phase. The results of a set of sizeable
experiments indicate a consistent and significant improvement for a set of
similarity measures that exploit information about small cavities in the
surface of enzymes
- …