195 research outputs found

    Heterorhabditis, Steinernema and their bacterial symbionts - lethal pathogens of insects

    Get PDF
    The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema together with their symbiont bacteria Photorhabdus and Xenorhabdus, respectively, are obligate and lethal parasites of insects. EPN can provide effective biological control of some important lepidopteran, dipteran and coleopteran pests of commercial crops and they are amenable to large-scale culture in liquid fermentors. They are unique among rhabditids in having a symbiotic relationshipwith an enteric bacterium species. The bacterial symbiont is required to kill the insect host and to digest the host tissues, thereby providing suitable nutrient conditions for nematode growth and development. This review describes the general biology of EPN and their symbionts and gives an overview of studies to date on EPN biodiversity, biogeography and phylogeny. The impetus for research in EPN and their symbionts has come about because of their biological control potential, with much of the focus in EPN research having been on applied aspects relating to pest control. However EPN and their symbionts are increasinglybeing viewed as exciting subjects for basic research in the areas of ecology, biodiversity, evolution, biochemistry, symbiosis and molecular genetics. Much progress has been made over the past 20 years in our understanding of the basic biology and genetics of EPN and their symbionts. We are now entering a new phase in which the tools of molecular genetics are being increasingly used to address a range of biological questions in EPN research. The knowledge gained from this endeavour should ensure that EPN will become even more effective biopesticides and should also ensure that EPN and their symbionts gain prominence as unique and intrinsically interesting biological systems

    Revised List of Type Specimens on Deposit in the University of California Davis Nematode Collection

    Get PDF
    The list of deposited type specimens is updated for the University of California Davis Nematode Collection, as recommended by the International Code of Zoological Nomenclature. The type collection includes 1,001 species and more than 11,000 individual specimens mounted on microscope slides. This list can be used as a reference to locate specimens but is not meant to clarify ambiguities that may exist concerning the type status of particular specimens

    A New Species of \u3ci\u3eHeterorhabditis\u3c/i\u3e from the Hawaiian Islands

    Get PDF
    A new species of nematode of the genus Heterorhabditis (Nemata: Heterorhabditidae) was found during a survey of the soil entomopathogenic nematode fauna of the Hawaiian Islands. Heterorhabditis hawaiiensis sp. n. can be separated from all other species of Heterorhabditis by the length of the infective juvenile and the morphological characters of the spicules, gubemaculum, and bursa. Random amplified polymorphic DNA (RAPD) fragment analysis showed that this species also has a distinct genetic pattern in RAPD bands relative to the other 6 species or isolates of Heterorhabditis that were compared

    An Entomopathogenic Nematode by Any Other Name

    Get PDF
    Among the diversity of insect-parasitic nematodes, entomopathogenic nematodes (EPNs) are distinct, cooperating with insect-pathogenic bacteria to kill insect hosts. EPNs have adapted specific mechanisms to associate with and transmit bacteria to insect hosts. New discoveries have expanded this guild of nematodes and refine our understanding of the nature and evolution of insect–nematode associations. Here, we clarify the meaning of “entomopathogenic” in nematology and argue that EPNs must rapidly kill their hosts with the aid of bacterial partners and must pass on the associated bacteria to future generations

    Three-Dimensional Basin and Fault Structure From a Detailed Seismic Velocity Model of Coachella Valley, Southern California

    Get PDF
    The Coachella Valley in the northern Salton Trough is known to produce destructive earthquakes, making it a high seismic hazard area. Knowledge of the seismic velocity structure and geometry of the sedimentary basins and fault zones is required to improve earthquake hazard estimates in this region. We simultaneously inverted first P wave travel times from the Southern California Seismic Network (39,998 local earthquakes) and explosions (251 land/sea shots) from the 2011 Salton Seismic Imaging Project to obtain a 3‐D seismic velocity model. Earthquakes with focal depths ≤10 km were selected to focus on the upper crustal structure. Strong lateral velocity contrasts in the top ~3 km correlate well with the surface geology, including the low‐velocity (<5 km/s) sedimentary basin and the high‐velocity crystalline basement rocks outside the valley. Sediment thickness is ~4 km in the southeastern valley near the Salton Sea and decreases to <2 km at the northwestern end of the valley. Eastward thickening of sediments toward the San Andreas fault within the valley defines Coachella Valley basin asymmetry. In the Peninsular Ranges, zones of relatively high seismic velocities (~6.4 km/s) between 2‐ and 4‐km depth may be related to Late Cretaceous mylonite rocks or older inherited basement structures. Other high‐velocity domains exist in the model down to 9‐km depth and help define crustal heterogeneity. We identify a potential fault zone in Lost Horse Valley unassociated with mapped faults in Southern California from the combined interpretation of surface geology, seismicity, and lateral velocity changes in the model

    Active deformation and shallow structure of the Wagner, Consag, and DelfĂ­n Basins, northern Gulf of California, Mexico

    Get PDF
    Oblique rifting began synchronously along the length of the Gulf of California at 6 Ma, yet there is no evidence for the existence of oceanic crust or a spreading transform fault system in the northern Gulf. Instead, multichannel seismic data show a broad shallow depression, ∼70 × 200 km, marked by active distributed deformation and six ∼10-km-wide segmented basins lacking well-defined transform faults. We present detailed images of faulting and magmatism based on the high resolution and quality of these data. The northern Gulf crust contains a dense (up to 18 faults in 5 km) complex network of mainly oblique-normal faults, with small offsets, dips of 60–80° and strikes of N-N30°E. Faults with seafloor offsets of tens of meters bound the Lower and two Upper Delfín Basins. These subparallel basins developed along splays from a transtensional zone at the NW end of the Ballenas Transform Fault. Twelve volcanic knolls were identified and are associated with the strands or horsetails from this zone. A structural connection between the two Upper Delfín Basins is evident in the switching of the center of extension along axis. Sonobuoy refraction data suggest that the basement consists of mixed igneous sedimentary material, atypical of mid-ocean ridges. On the basis of the near-surface manifestations of active faulting and magmatism, seafloor spreading will likely first occur in the Lower Delfín Basin. We suggest the transition to seafloor spreading is delayed by the lack of strain-partitioned and focused deformation as a consequence of shear in a broad zone beneath a thick sediment cover

    Synergism between entomopathogenic nematodes and Bacillus thuringiensis crops: integrating biological control and resistance management

    Get PDF
    Summary 1. The past decade has witnessed a continual increase in the use of crops genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). This presents the challenge of designing agricultural systems to manage pests and the evolution of resistance to Bt. 2. We tested whether entomopathogenic nematodes might act synergistically with Bt crops by killing pests in non-Bt refuges and by increasing the fitness costs of resistance to Bt. We also tested whether insect mortality and fitness costs were affected by the cotton phytochemical gossypol. 3. The entomopathogenic nematode Steinernema riobrave increased the fitness cost of Bt resistance, indicating that its presence in refuges may slow pest adaptation to Bt crops. No effect on fitness costs was detected for the nematode Heterorhabditis bacteriophora . Gossypol did not alter nematode-imposed fitness costs. 4. Simulation modelling supported the hypothesis that nematodes in refuges may slow resistance evolution. 5. The effects of gossypol on insect mortality from nematodes and nematode reproduction differed between nematode species. Gossypol increased insect mortality caused by H. bacteriophora but did not affect mortality caused by S. riobrave . Gossypol enhanced reproduction of H. bacteriophora and decreased reproduction of S. riobrave . 6. Synthesis and applications. Our results point to the value of developing integrated pest management strategies for Bt crops that include non-Bt refuges in which entomopathogenic nematodes are used as a pest-management agent. Because entomopathogenic nematodes can magnify fitness costs of Bt resistance, their presence in refuges may delay resistance by pests to Bt crops. Moreover, entomopathogenic nematodes can serve as biological control agents thereby decreasing dependence on conventional insecticides to manage pest populations in refuges
    • …
    corecore