348 research outputs found
Designing Photonic Topological Insulators with Quantum-Spin-Hall Edge States using Topology Optimization
Designing photonic topological insulators is highly non-trivial because it
requires inversion of band symmetries around the band gap, which was so far
done using intuition combined with meticulous trial and error. Here we take a
completely different approach: we consider the design of photonic topological
insulators as an inverse design problem and use topology optimization to
maximize the transmission through an edge mode with a sharp bend. Two design
domains composed of two different, but initially identical,
C-symmetric unit cells define the geometrical design problem.
Remarkably, the optimization results in a photonic topological insulator
reminiscent of the shrink-and-grow approach to quantum-spin-Hall photonic
topological insulators but with notable differences in the topology of the
crystal as well as qualitatively different band structures and with
significantly improved performance as gauged by the band-gap sizes, which are
at least 50 \% larger than previous designs. Furthermore, we find a directional
beta factor exceeding 99 \%, and very low losses for sharp bends. Our approach
allows for the introduction of fabrication limitations by design and opens an
avenue towards designing PTIs with hitherto unexplored symmetry constraints.Comment: 7 pages, 5 figure
Nonuniversal intensity correlations in 2D Anderson localizing random medium
Complex dielectric media often appear opaque because light traveling through
them is scattered multiple times. Although the light scattering is a random
process, different paths through the medium can be correlated encoding
information about the medium. Here, we present spectroscopic measurements of
nonuniversal intensity correlations that emerge when embedding quantum emitters
inside a disordered photonic crystal that is found to Anderson-localize light.
The emitters probe in-situ the microscopic details of the medium, and imprint
such near-field properties onto the far-field correlations. Our findings
provide new ways of enhancing light-matter interaction for quantum
electrodynamics and energy harvesting, and may find applications in
subwavelength diffuse-wave spectroscopy for biophotonics
Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane
Optical cavity cooling of mechanical resonators has recently become a
research frontier. The cooling has been realized with a metal-coated silicon
microlever via photo-thermal force and subsequently with dielectric objects via
radiation pressure. Here we report cavity cooling with a crystalline
semiconductor membrane via a new mechanism, in which the cooling force arises
from the interaction between the photo-induced electron-hole pairs and the
mechanical modes through the deformation potential coupling. The optoelectronic
mechanism is so efficient as to cool a mode down to 4 K from room temperature
with just 50 uW of light and a cavity with a finesse of 10 consisting of a
standard mirror and the sub-wavelength-thick semiconductor membrane itself. The
laser-cooled narrow-band phonon bath realized with semiconductor mechanical
resonators may open up a new avenue for photonics and spintronics devices.Comment: 5 pages, 4 figure
Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes
a promising system for the realization of single-photon transistors,
quantum-logic gates based on giant single-photon nonlinearities, and high
bit-rate deterministic single-photon sources. The key figure of merit for such
devices is the -factor, which is the probability for an emitted single
photon to be channeled into a desired waveguide mode. We report on the
experimental achievement of for a quantum dot
coupled to a photonic-crystal waveguide, corresponding to a single-emitter
cooperativity of . This constitutes a nearly ideal
photon-matter interface where the quantum dot acts effectively as a 1D
"artificial" atom, since it interacts almost exclusively with just a single
propagating optical mode. The -factor is found to be remarkably robust
to variations in position and emission wavelength of the quantum dots. Our work
demonstrates the extraordinary potential of photonic-crystal waveguides for
highly efficient single-photon generation and on-chip photon-photon
interaction
Single-photon nonlinear optics with a quantum dot in a waveguide
Strong nonlinear interactions between photons enable logic operations for
both classical and quantum-information technology. Unfortunately, nonlinear
interactions are usually feeble and therefore all-optical logic gates tend to
be inefficient. A quantum emitter deterministically coupled to a propagating
mode fundamentally changes the situation, since each photon inevitably
interacts with the emitter, and highly correlated many-photon states may be
created . Here we show that a single quantum dot in a photonic-crystal
waveguide can be utilized as a giant nonlinearity sensitive at the
single-photon level. The nonlinear response is revealed from the intensity and
quantum statistics of the scattered photons, and contains contributions from an
entangled photon-photon bound state. The quantum nonlinearity will find
immediate applications for deterministic Bell-state measurements and
single-photon transistors and paves the way to scalable waveguide-based
photonic quantum-computing architectures
Single-Photon Superradiance from a Quantum Dot.
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies
Nonlocal Electrodynamics of Rotating Systems
The nonlocal electrodynamics of uniformly rotating systems is presented and
its predictions are discussed. In this case, due to paucity of experimental
data, the nonlocal theory cannot be directly confronted with observation at
present. The approach adopted here is therefore based on the correspondence
principle: the nonrelativistic quantum physics of electrons in circular
"orbits" is studied. The helicity dependence of the photoeffect from the
circular states of atomic hydrogen is explored as well as the resonant
absorption of a photon by an electron in a circular "orbit" about a uniform
magnetic field. Qualitative agreement of the predictions of the classical
nonlocal electrodynamics with quantum-mechanical results is demonstrated in the
correspondence regime.Comment: 23 pages, no figures, submitted for publicatio
- …