13 research outputs found

    Early Development of Network Oscillations in the Ferret Visual Cortex

    Get PDF
    Abstract Although oscillations during development have been characterized in a wide range of neural systems, little is known about the interaction between these network oscillations and neuronal spiking, and the interactions among different oscillation frequencies. Here we recorded the spontaneous and visual-elicited local field potential (LFP) and multi-unit activity (MUA) in the visual cortex of freely-moving juvenile ferrets before and after eye-opening. We found that both the spontaneous and visually-elicited LFP power was increased after eye-opening, especially in higher frequency bands (>30 Hz). Spike LFP phase coupling was decreased for lower frequency bands (theta and alpha) but slightly increased for higher frequencies (high-gamma band). A similar shift towards faster frequencies also occurred for phase-amplitude coupling; with maturation, the coupling of the theta/alpha/beta band amplitude to the delta phase was decreased and the high-gamma amplitude coupling to theta/alpha phase was increased. This shift towards higher frequencies was also reflected in the visual responses; the LFP oscillation became more entrained by visual stimulation with higher frequencies (>10 Hz). Taken together, these results suggest gamma oscillation as a signature of the maturation of cortical circuitry

    Dynamic reconfiguration of cortical functional connectivity across brain states

    Get PDF
    Throughout each day, the brain displays transient changes in state, as evidenced by shifts in behavior and vigilance. While the electrophysiological correlates of brain states have been studied for some time, it remains unclear how large-scale cortico-cortical functional connectivity systematically reconfigures across states. Here, we investigate state-dependent shifts in cortical functional connectivity by recording local field potentials (LFPs) during spontaneous behavioral transitions in the ferret using chronically implanted micro-electrocorticographic (?ECoG) arrays positioned over occipital, parietal, and temporal cortical regions. To objectively classify brain state, we describe a data-driven approach that projects time-varying LFP spectral properties into brain state space. Distinct brain states displayed markedly different patterns of cross-frequency phase-amplitude coupling and inter-electrode phase synchronization across several LFP frequency bands. The largest across-state differences in functional connectivity were observed between periods of presumed slow-wave and rapid-eye-movement-sleep/active-state, which were characterized by the contrasting phenomena of cortical network fragmentation and global synchronization, respectively. Collectively, our data provide strong evidence that large-scale functional interactions in the brain dynamically reconfigure across behavioral states

    Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways

    Get PDF
    The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways

    The spontaneous and stimulus evoked neural dynamics of the superior colliculus in the anesthetized ferret

    No full text
    The study of brain dynamics has traditionally focused study on well-established cortico-cortical, thalamo-cortical, and hippocampo-cortical pathways in the brain, neglecting other brain structures. The superior colliculus (SC) is a highly conserved midbrain structure that displays vast intrinsic, local and global patterns of anatomical connectivity, and therefore presents itself as an interesting alternative structure to study the fundamental principles of neural dynamics. Here, we report for the first time the analysis of both stimulus evoked and spontaneously generated SC neural dynamics across three spatial scales: dynamics intrinsic to the SC, local dynamical interaction with the neighboring inferior colliculus (IC), and large-scale dynamical interaction with the cortex. Within the SC, visual evoked neural dynamics was best characterized by the presence of temporally precise gamma oscillations in retinorecipient superficial SC layers following flash and grating stimuli. Local interareal dynamics in the midbrain were defined by the presence of subthreshold visually evoked activity in the IC that was driven by visual inputs from the SC. Finally, spontaneously generated SC activity is strongly governed by the state of cortical networks, with SC activity locked to prominent slow cortical and spindle oscillations. Collectively, this work provides evidence that nature of neural activity in the SC is strongly governed by both bottom-up sensory and top-down cortical inputs

    Direct taxation and the single European market

    No full text
    After years of little or no progress, there are now important European Community developments in the field of direct taxation. Three measures were adopted in 1990 -- affecting parents and subsidiaries, mergers and divisions, and transfer pricing disputes. Others are likely to be adopted before the end of 1991 -- intra-EC payments of interest and royalties, tax losses of permanent establishments in different Member States, and relief on losses of subsidiaries. However, in return for achieving progress, Member States are likely to insist on flexibility and compromise before particular directives are adopted. This means that the laws which result may not be uniform in wording or effect. The differences will provide both opportunities and problems in tax planning. All EC companies with operations or affiliates in more than one EC country, and non-EC headquartered groups with European operations, should re-examine their structures, financing and tax planning. Where possible, action should be delayed until the relevant home laws have been passed. Where delay is impossible, flexibility should be the principal goal, to allow for changes later.

    Audiovisual integration in anesthetized ferret - ECoG data.

    No full text
    Epicortical LFP data of auditory and visual responses in anesthetized ferrets (isoflurane) were recorded with a custom ECoG array of 64 electrodes at the Institute of Neurophysiology and Pathophysiology, UKE. The results were published in "Context-specific modulation of intrinsic coupling modes shapes multisensory processing", Galindo-Leon et al., Sci. Adv. 2019

    Theta Oscillations Organize Spiking Activity in Higher-Order Visual Thalamus during Sustained Attention

    No full text
    Higher-order visual thalamus plays a fundamental but poorly understood role in attention-demanding tasks. To investigate how neuronal dynamics in higher-order visual thalamus are modulated by sustained attention, we performed multichannel electrophysiological recordings in the lateral posterior-pulvinar complex (LP/pulvinar) in the ferret (Mustela putorius furo). We recorded single unit activity and local field potential (LFP) during the performance of the five-choice serial reaction time task (5-CSRTT), which is used in both humans and animals as an assay of sustained attention. We found that half of the units exhibited an increasing firing rate during the delay period before stimulus onset (attention-modulated units). In contrast, the non-attention-modulated units responded to the stimulus, but not during the delay period. Spike-field coherence (SFC) of only the attention-modulated neurons significantly increased from the start of the delay period until screen touch, predominantly in the θ frequency band. In addition, θ power and θ/γ phase amplitude coupling (PAC) were elevated throughout the delay period. Our findings suggest that the θ oscillation plays a central role in orchestrating thalamic signaling during sustained attention

    Oscillatory Dynamics in the Frontoparietal Attention Network during Sustained Attention in the Ferret

    Get PDF
    Sustained attention requires the coordination of neural activity across multiple cortical areas in the frontoparietal network, in particular the prefrontal cortex (PFC) and posterior parietal cortex (PPC). Previous work has demonstrated that activity in these brain regions is coordinated by neuronal oscillations of the local field potential (LFP). However, the underlying coordination of activity in terms of organization of single unit (SU) spiking activity has remained poorly understood, particularly in the freely moving animal. We found that long-range functional connectivity between anatomically connected PFC and PPC was mediated by oscillations in the theta frequency band. SU activity in PFC was phase locked to theta oscillations in PPC, and spiking activity in PFC and PPC was locked to local high-gamma activity. Together, our results support a model in which frequency-specific synchronization mediates functional connectivity between and within PFC and PPC of the frontoparietal attention network in the freely moving animal
    corecore