36 research outputs found

    Towards 3D-Electrical Capacitance Tomography for interface detection

    Get PDF
    The application of three-dimensional electrical capacitance tomography (3D-ECT) for the in situ monitoring of a hard boundary or interface has been investigated using imaged phantoms that simulate real-life processes. A cylinder-in-tube phantom manufactured from polyethylene (PE), a low di-electric and non-conductive material, was imaged using the linear back projection (LBP) algorithm with the larger tube immersed at varying intervals to test the ability of the technique to image interfaces axially through the sensor. The interface between PE and air is clearly imaged and correlates to the known tube penetration within the sensor. The cylinder phantom is imaged in the centre of the sensor; however, the reduction in measurement density towards the centre of the ECT sensor results in reduced accuracy. A thresholding method, previously applied to binary systems to improve the imaged accuracy of a hard boundary between two separate phases, has been applied to the 3D-ECT tomograms that represent the PE phantom. This approach has been shown to improve the accuracy of the acquired image of a cylinder of air within a non-conductive PE tube.</jats:p

    Understanding the generation of methanol synthesis and water gas shift activity over copper-based catalysts – A spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO<sub>2</sub>/H<sub>2</sub> feeds

    Get PDF
    AbstractUnderstanding the mechanism and generation of activity for methanol synthesis and the water gas shift reactions over copper-based catalysts remains a significant area of study in heterogeneous catalysis. In this work, steady and non-steady state experimental and kinetic modelling methods are presented to demonstrate changes in functionality of a Cu/ZnO/Al2O3 catalyst based on gas composition.Steady-state testing of a Cu/ZnO/Al2O3 catalyst, using experimental spatial discretisation approaches with fixed-bed, integral-operation micro reactors, has generated performance data over a range of PCO/PCO2 ratios (1–10). The data showed a mixture of observations where forward or reverse water gas shift was kinetically favourable, and also where the reaction was significantly limited by thermodynamic equilibrium. A steady state Langmuir–Hinshelwood model based on micro kinetics was most appropriate which includes kinetic descriptions of both directions of the water gas shift reaction. Using this method, the entire dataset could be predicted and an internal consistency within the kinetic model of the key adsorption constants was demonstrated.Non-steady state, ‘reactor start-up’, testing of a Cu/ZnO/Al2O3 catalyst marked a novel approach to further understanding the functionality of the catalyst. Initial changes in surface carbon and oxygen populations were quantified and linked to subsequent dynamic changes in methanol synthesis and water gas shift activity. Cu/ZnO and Cu/Al2O3 formulations were also evaluated and tested using kinetic models, permitting a structural and compositional comparison with Cu/ZnO/Al2O3

    Fundamental investigation of the drying of solid suspensions

    Get PDF
    In this work, a comprehensive series of experiments is conducted to investigate the drying behaviour of micro- and nano-sized particle dispersions. To this end, an acoustic levitator was used to study the drying kinetics of single droplets. The temporal evolution of the actual droplets was recorded using a CMOS camera and the solid grains produced at the end of drying were investigated by SEM imaging. At the end of drying, the grains show different morphologies as a function of the particle size, concentration and initial droplet volume. We combine these experimental data to show the drying behaviour is dependent on all the parameters and that the data all collapses when plotted against Péclet number. This resulted in a novel characteristic diagram which allows one to predict the shape of the dried colloidal droplet based on Pé. Our results extend the fundamental understanding of the mechanisms controlling drying of droplet suspensions

    Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study.

    Get PDF
    Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at ∼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.The authors would like to acknowledge CASTech (EPSRC grant EP/G011397/1), RCUK Basic Technology Grant (EP/E048811/1), STFC for beamtime allocation (RB910286) and Jon Mitchell (Cambridge) for valuable discussions.This is the final version of the article. It was first available from RSC via http://dx.doi.org/10.1039/C5CP01132
    corecore