882 research outputs found
Low-energy electronic properties of clean CaRuO: elusive Landau quasiparticles
We have prepared high-quality epitaxial thin films of CaRuO with residual
resistivity ratios up to 55. Shubnikov-de Haas oscillations in the
magnetoresistance and a temperature dependence in the electrical
resistivity only below 1.5 K, whose coefficient is substantially suppressed in
large magnetic fields, establish CaRuO as a Fermi liquid (FL) with
anomalously low coherence scale. Non-Fermi liquid (NFL) dependence is
found between 2 and 25 K. The high sample quality allows access to the
intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6
THz, the conductivity is Drude-like and can be modeled by FL concepts, while
for higher frequencies non-Drude behavior, inconsistent with FL predictions, is
found. This establishes CaRuO as a prime example of optical NFL behavior in
the THz range.Comment: 12 pages, 21 figures including supplemental materia
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
Human Milk Protein Production in Xenografts of Genetically Engineered Bovine Mammary Epithelial Stem Cells
BACKGROUND: In the bovine species milk production is well known to correlate with mammary tissue mass. However, most advances in optimizing milk production relied on improvements of breeding and husbandry practices. A better understanding of the cells that generate bovine mammary tissue could facilitate important advances in milk production and have global economic impact. With this possibility in mind, we show that a mammary stem cell population can be functionally identified and isolated from the bovine mammary gland. We also demonstrate that this stem cell population may be a promising target for manipulating the composition of cow's milk using gene transfer. METHODS AND FINDINGS: We show that the in vitro colony-forming cell assay for detecting normal primitive bipotent and lineage-restricted human mammary clonogenic progenitors are applicable to bovine mammary cells. Similarly, the ability of normal human mammary stem cells to regenerate functional bilayered structures in collagen gels placed under the kidney capsule of immunodeficient mice is shared by a subset of bovine mammary cells that lack aldehyde dehydrogenase activity. We also find that this activity is a distinguishing feature of luminal-restricted bovine progenitors. The regenerated structures recapitulate the organization of bovine mammary tissue, and milk could be readily detected in these structures when they were assessed by immunohistochemical analysis. Transplantation of the bovine cells transduced with a lentivirus encoding human β-CASEIN led to expression of the transgene and secretion of the product by their progeny regenerated in vivo. CONCLUSIONS: These findings point to a common developmental hierarchy shared by human and bovine mammary glands, providing strong evidence of common mechanisms regulating the maintenance and differentiation of mammary stem cells from both species. These results highlight the potential of novel engineering and transplant strategies for a variety of commercial applications including the production of modified milk components for human consumption
Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109971/1/cptclpt20132.pd
A Systematic Extended Iterative Solution for QCD
An outline is given of an extended perturbative solution of Euclidean QCD
which systematically accounts for a class of nonperturbative effects, while
allowing renormalization by the perturbative counterterms. Proper vertices
Gamma are approximated by a double sequence Gamma[r,p], with r the degree of
rational approximation w.r.t. the QCD mass scale Lambda, nonanalytic in the
coupling g, and p the order of perturbative corrections in g-squared,
calculated from Gamma[r,0] - rather than from the perturbative Feynman rules
Gamma(0)(pert) - as a starting point. The mechanism allowing the
nonperturbative terms to reproduce themselves in the Dyson-Schwinger equations
preserves perturbative renormalizability and is tied to the divergence
structure of the theory. As a result, it restricts the self-consistency problem
for the Gamma[r,0] rigorously - i.e. without decoupling approximations - to the
superficially divergent vertices. An interesting aspect of the scheme is that
rational-function sequences for the propagators allow subsequences describing
short-lived excitations. The method is calculational, in that it allows known
techniques of loop computation to be used while dealing with integrands of
truly nonperturbative content.Comment: 48 pages (figures included). Scope of replacement: correction of a
technical defect; no changes in conten
Spatial Symmetry of Superconducting Gap in YBa2Cu3O7-\delta Obtained from Femtosecond Spectroscopy
The polarized femtosecond spectroscopies obtained from well characterized
(100) and (110) YBa2Cu3O7-\delta thin films are reported. This bulk-sensitive
spectroscopy, combining with the well-textured samples, serves as an effective
probe to quasiparticle relaxation dynamics in different crystalline
orientations. The significant anisotropy in both the magnitude of the
photoinduced transient reflectivity change and the characteristic relaxation
time indicates that the nature of the relaxation channel is intrinsically
different in various axes and planes. By the orientation-dependent analysis,
d-wave symmetry of the bulk-superconducting gap in cuprate superconductors
emerges naturally.Comment: 8 pages, 4 figures. To be published in Physical Review B, Rapid
Communication
Educating the Next Generation of Pharmacogenomics Experts: Global Educational Needs and Concepts
Personalised Therapeutic
A Lattice Study of the Gluon Propagator in Momentum Space
We consider pure glue QCD at beta=5.7, beta=6.0 and beta=6.3. We evaluate the
gluon propagator both in time at zero 3-momentum and in momentum space. From
the former quantity we obtain evidence for a dynamically generated effective
mass, which at beta=6.0 and beta=6.3 increases with the time separation of the
sources, in agreement with earlier results. The momentum space propagator G(k)
provides further evidence for mass generation. In particular, at beta=6.0, for
k less than 1 GeV, the propagator G(k) can be fit to a continuum formula
proposed by Gribov and others, which contains a mass scale b, presumably
related to the hadronization mass scale. For higher momenta Gribov's model no
longer provides a good fit, as G(k) tends rather to follow an inverse power
law. The results at beta=6.3 are consistent with those at beta=6.0, but only
the high momentum region is accessible on this lattice. We find b in the range
of three to four hundred MeV and the exponent of the inverse power law about
2.7. On the other hand, at beta=5.7 (where we can only study momenta up to 1
GeV) G(k) is best fit to a simple massive boson propagator with mass m. We
argue that such a discrepancy may be related to a lack of scaling for low
momenta at beta=5.7. {}From our results, the study of correlation functions in
momentum space looks promising, especially because the data points in Fourier
space turn out to be much less correlated than in real space.Comment: 19 pages + 12 uuencoded PostScript picture
Confinement and the analytic structure of the one body propagator in Scalar QED
We investigate the behavior of the one body propagator in SQED. The self
energy is calculated using three different methods: i) the simple bubble
summation, ii) the Dyson-Schwinger equation, and iii) the Feynman-Schwinger
represantation. The Feynman-Schwinger representation allows an {\em exact}
analytical result. It is shown that, while the exact result produces a real
mass pole for all couplings, the bubble sum and the Dyson-Schwinger approach in
rainbow approximation leads to complex mass poles beyond a certain critical
coupling. The model exhibits confinement, yet the exact solution still has one
body propagators with {\it real} mass poles.Comment: 5 pages 2 figures, accepted for publication in Phys. Rev.
Four-point Green functions in the Schwinger Model
The evaluation of the 4-point Green functions in the 1+1 Schwinger model is
presented both in momentum and coordinate space representations. The crucial
role in our calculations play two Ward identities: i) the standard one, and ii)
the chiral one. We demonstrate how the infinite set of Dyson-Schwinger
equations is simplified, and is so reduced, that a given n-point Green function
is expressed only through itself and lower ones. For the 4-point Green
function, with two bosonic and two fermionic external `legs', a compact
solution is given both in momentum and coordinate space representations. For
the 4-fermion Green function a selfconsistent equation is written down in the
momentum representation and a concrete solution is given in the coordinate
space. This exact solution is further analyzed and we show that it contains a
pole corresponding to the Schwinger boson. All detailed considerations given
for various 4-point Green functions are easily generizable to higher functions.Comment: In Revtex, 12 pages + 2 PostScript figure
- …