7 research outputs found

    Reversible vancomycin susceptibility within emerging ST1421 Enterococcus faecium strains is associated with rearranged vanA-gene clusters and increased vanA plasmid copy number

    Get PDF
    Vancomycin variable enterococci (VVE) are van-positive enterococci with a vancomycin-susceptible phenotype (VVE-S) that can convert to a resistant phenotype (VVE-R) and be selected for during vancomycin exposure. VVE-R outbreaks have been reported in Canada and Scandinavian countries. The aim of this study was to examine the presence of VVE in whole genome sequenced (WGS) Australian bacteremia Enterococcus faecium (Efm) isolates collected through the Australian Group on Antimicrobial resistance (AGAR) network. Eight potential VVEAus isolates, all identified as Efm ST1421, were selected based on the presence of vanA and a vancomycin-susceptible phenotype. During vancomycin selection, two potential VVE-S harboring intact vanHAX genes, but lacking the prototypic vanRS and vanZ genes, reverted to a resistant phenotype (VVEAus-R). Spontaneous VVEAus-R reversion occurred at a frequency of 4-6 × 10−8 resistant colonies per parent cell in vitro after 48 h and led to high-level vancomycin and teicoplanin resistance. The S to R reversion was associated with a 44-bp deletion in the vanHAX promoter region and an increased vanA plasmid copy number. The deletion in the vanHAX promoter region enables an alternative constitutive promoter for the expression of vanHAX. Acquisition of vancomycin resistance was associated with a low fitness cost compared with the corresponding VVEAus-S isolate. The relative proportion of VVEAus-R vs. VVEAus-S decreased over time in serial passages without vancomycin selection. Efm ST1421 is one of the predominant VanA-Efm multilocus sequence types found across most regions of Australia, and has also been associated with a major prolonged VVE outbreak in Danish hospitals

    Burkholderia lata Infections from Intrinsically Contaminated Chlorhexidine Mouthwash, Australia, 2016

    Get PDF
    "Emerging Infectious Diseases is an open access journal in the public domain"Burkholderia lata was isolated from 8 intensive care patients at 2 tertiary hospitals in Australia. Whole-genome sequencing demonstrated that clinical and environmental isolates originated from a batch of contaminated commercial chlorhexidine mouthwash. Genomic analysis identified efflux pump–encoding genes as potential facilitators of bacterial persistence within this biocide

    Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke

    Get PDF
    BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β = 0.21; 95% CI 0.04-0.38, DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets

    The First Isolation and Whole Genome Sequencing of Murray Valley Encephalitis Virus from Cerebrospinal Fluid of a Patient with Encephalitis.

    Get PDF
    Murray Valley Encephalitis virus (MVEV) is a mosquito-borne Flavivirus. Clinical presentation is rare but severe, with a case fatality rate of 15?30%. Here we report a case of MVEV from the cerebrospinal fluid (CSF) of a patient in the Northern Territory in Australia. Initial diagnosis was performed using both MVEV-specific real-time, and Pan-Flavivirus conventional, Polymerase Chain Reaction (PCR), with confirmation by Sanger sequencing. Subsequent isolation, the first from CSF, was conducted in Vero cells and the observed cytopathic effect was confirmed by increasing viral titre in the real-time PCR. Isolation allowed for full genome sequencing using the Scriptseq V2 RNASeq library preparation kit. A consensus genome for VIDRL-MVE was generated and phylogenetic analysis identified it as Genotype 2. This is the first reported isolation, and full genome sequencing of MVEV from CSF. It is also the first time Genotype 2 has been identified in humans. As such, this case has significant implications for public health surveillance, epidemiology, and the understanding of MVEV evolution

    Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke

    No full text
    Background and objectives: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. Here, we examined the impact of brain age, a measure of neurobiological aging derived from whole brain structural neuroimaging, on post-stroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good versus poor outcomes./ Methods: We conducted a cross-sectional observational study using a multi-site dataset of 3D brain structural MRIs and clinical measures from ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a three-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good versus poor outcomes in patients with matched lesion damage./ Results: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β=0.21; 95% CI 0.04,0.38, P=0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (β=-0.28; 95% CI: -0.41,-0.15, P<0.001) and across multiple domains of function (β=-0.14; 95% CI: -0.22,-0.06, P<0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI: 3%,58%, P=0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (OR=1.04, 95% CI: 1.01,1.08, P=0.004)./ Conclusions: We provide evidence that younger brain age is associated with superior post-stroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of post-stroke outcomes compared to focal injury measures alone, opening new possibilities for potential therapeutic targets.
    corecore