12 research outputs found

    The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines

    Get PDF
    One way that tumors evade immune destruction is through tumor and stromal cell expression of arginine-degrading enzyme arginase-2 (ARG2). Here we describe the existence of pro-inflammatory effector T-cells that recognize ARG2 and can directly target tumor and tumor-infiltrating cells. Using a library of 34 peptides covering the entire ARG2 sequence, we examined reactivity toward these peptides in peripheral blood mononuclear cells from cancer patients and healthy individuals. Interferon-γ ELISPOT revealed frequent immune responses against several of the peptides, indicating that ARG2–specific self-reactive T-cells are natural components of the human T-cell repertoire. Based on this, the most immunogenic ARG2 protein region was further characterized. By identifying conditions in the microenvironment that induce ARG2 expression in myeloid cells, we showed that ARG2-specific CD4T-cells isolated and expanded from a peripheral pool from a prostate cancer patient could recognize target cells in an ARG2-dependent manner. In the ‘cold’ in vivo tumor model Lewis lung carcinoma, we found that activation of ARG2-specific T-cells by vaccination significantly inhibited tumor growth. Immune-modulatory vaccines targeting ARG2 thus are a candidate strategy for cancer immunotherapy

    Cytotoxic T cells isolated from healthy donors and cancer patients kill TGFβ-expressing cancer cells in a TGFβ-dependent manner

    No full text
    Transforming growth factor-beta (TGFβ) is a highly potent immunosuppressive cytokine. Although TGFβ is a tumor suppressor in early/premalignant cancer lesions, the cytokine has several tumor-promoting effects in advanced cancer; abrogation of the antitumor immune response is one of the most important tumor-promoting effects. As several immunoregulatory mechanisms have recently been shown to be targets of specific T cells, we hypothesized that TGFβ is targeted by naturally occurring specific T cells and thus could be a potential target for immunomodulatory cancer vaccination. Hence, we tested healthy donor and cancer patient T cells for spontaneous T-cell responses specifically targeting 38 20-mer epitopes derived from TGFβ1. We identified numerous CD4(+) and CD8(+) T-cell responses against several epitopes in TGFβ. Additionally, several ex vivo responses were identified. By enriching specific T cells from different donors, we produced highly specific cultures specific to several TGFβ-derived epitopes. Cytotoxic CD8(+) T-cell clones specific for both a 20-mer epitope and a 9-mer HLA-A2 restricted killed epitope peptide were pulsed in HLA-A2(+) target cells and killed the HLA-A2(+) cancer cell lines THP-1 and UKE-1. Additionally, stimulation of THP-1 cancer cells with cytokines that increased TGFβ expression increased the fraction of killed cells. In conclusion, we have shown that healthy donors and cancer patients harbor CD4(+) and CD8(+) T cells specific for TGFβ-derived epitopes and that cytotoxic T cells with specificity toward TGFβ-derived epitopes are able to recognize and kill cancer cell lines in a TGFβ-dependent manner

    Arginase 1–Based immune modulatory vaccines induce anticancer immunity and synergize with Anti–PD-1 checkpoint blockade

    Get PDF
    Expression of the L-arginine catabolizing enzyme arginase 1 (ARG1) is a central immunosuppressive mechanism mediated by tumor-educated myeloid cells. Increased activity of ARG1 promotes the formation of an immunosuppressive microenvironment and leads to a more aggressive phenotype in many cancers. Intrinsic T-cell immunity against ARG1-derived epitopes in the peripheral blood of cancer patients and healthy subjects has previously been demonstrated. To evaluate the antitumor efficacy of ARG1-derived peptide vaccines as a monotherapy and as a combinational therapy with checkpoint blockade, different in vivo syngeneic mouse tumor models were utilized. To evaluate the antitumor effects, flow cytometry analysis and IHC were performed on tumors, and ELISPOT assays were performed to characterize immune responses. We show that ARG1-targeting therapeutic vaccines were able to activate endogenous antitumor immunity in several in vivo syngeneic mouse tumor models and to modulate the cell composition of the tumor microenvironment without causing any associated side effects or systemic toxicity. ARG1-targeting vaccines in combination with anti-PD-1 also resulted in increased T-cell infiltration, decreased ARG1 expression, reduced suppressive function of tumor-educated myeloid cells, and a shift in the M1/M2 ratio of tumor-infiltrating macrophages. These results indicated that the induced shift toward a more proinflammatory microenvironment by ARG1-targeting immunotherapy favors effective tumor control when combined with anti-PD-1 checkpoint blockade. Our data illustrate the ability of ARG1-based immune modulatory vaccination to elicit antigen-specific immunosurveillance and imply the feasibility of this novel immunotherapeutic approach for clinical translation

    A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma

    No full text
    Anti-programmed death (PD)-1 (aPD1) therapy is an effective treatment for metastatic melanoma (MM); however, over 50% of patients progress due to resistance. We tested a first-in-class immune-modulatory vaccine (IO102/IO103) against indoleamine 2,3-dioxygenase (IDO) and PD ligand 1 (PD-L1), targeting immunosuppressive cells and tumor cells expressing IDO and/or PD-L1 (IDO/PD-L1), combined with nivolumab. Thirty aPD1 therapy-naive patients with MM were treated in a phase 1/2 study (https://clinicaltrials.gov/, NCT03047928). The primary endpoint was feasibility and safety; the systemic toxicity profile was comparable to that of nivolumab monotherapy. Secondary endpoints were efficacy and immunogenicity; an objective response rate (ORR) of 80% (confidence interval (CI), 62.7–90.5%) was reached, with 43% (CI, 27.4–60.8%) complete responses. After a median follow-up of 22.9 months, the median progression-free survival (PFS) was 26 months (CI, 15.4–69 months). Median overall survival (OS) was not reached. Vaccine-specific responses assessed in vitro were detected in the blood of >93% of patients during vaccination. Vaccine-reactive T cells comprised CD4(+) and CD8(+) T cells with activity against IDO- and PD-L1-expressing cancer and immune cells. T cell influx of peripherally expanded T cells into tumor sites was observed in responding patients, and general enrichment of IDO- and PD-L1-specific clones after treatment was documented. These clinical efficacy and favorable safety data support further validation in a larger randomized trial to confirm the clinical potential of this immunomodulating approach

    Mutant FOXL2C134W highjacks SMAD4 and SMAD2/3 to drive adult granulosa cell tumors

    No full text
    The mutant protein FOXL2(C134W) is expressed in at least 95% of adult-type ovarian granulosa cell tumors (AGCT) and is considered to be a driver of oncogenesis in this disease. However, the molecular mechanism by which FOXL2(C134W) contributes to tumorigenesis is not known. Here we show that mutant FOXL2(C134W) acquires the ability to bind SMAD4, forming a FOXL2(C134W)/SMAD4/SMAD2/3 complex that binds a novel hybrid DNA motif AGHCAHAA, unique to the FOXL2(C134W) mutant. This binding induced an enhancer-like chromatin state, leading to transcription of nearby genes, many of which are characteristic of epithelial-to-mesenchymal transition. FOXL2(C134W) also bound hybrid loci in primary AGCT. Ablation of SMAD4 or SMAD2/3 resulted in strong reduction of FOXL2(C134W) binding at hybrid sites and decreased expression of associated genes. Accordingly, inhibition of TGFβ mitigated the transcriptional effect of FOXL2(C134W). Our results provide mechanistic insight into AGCT pathogenesis, identifying FOXL2(C134W) and its interaction with SMAD4 as potential therapeutic targets to this condition

    Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment

    No full text
    Galectin-3 (Gal3) can be expressed by many cells in the tumor microenvironment (TME), including cancer cells, cancer-associated fibroblasts, tumor-associated macrophages, and regulatory T cells (Tregs). In addition to immunosuppression, Gal3 expression has been connected to malignant cell transformation, tumor progression, and metastasis. In the present study, we found spontaneous T-cell responses against Gal3-derived peptides in PBMCs from both healthy donors and cancer patients. We isolated and expanded these Gal3-specific T cells in vitro and showed that they could directly recognize target cells that expressed Gal3. Finally, therapeutic vaccination with a long Gal3-derived peptide epitope, which induced the expansion of Gal3-specific CD8(+) T cells in vivo, showed a significant tumor-growth delay in mice inoculated with EO771.LMB metastatic mammary tumor cells. This was associated with a significantly lower percentage of both Tregs and tumor-infiltrating Gal3(+) cells in the non-myeloid CD45(+)CD11b(−) compartment and with an alteration of the T-cell memory populations in the spleens of Gal3-vaccinated mice. These results suggest that by activating Gal3-specific T cells by an immune-modulatory vaccination, we can target Gal3-producing cells in the TME, and thereby induce a more immune permissive TME. This indicates that Gal3 could be a novel target for therapeutic cancer vaccines

    An immunogenic first-in-human immune modulatory vaccine with PD-L1 and PD-L2 peptides is feasible and shows early signs of efficacy in follicular lymphoma

    No full text
    Cells in the tumor microenvironment of Follicular lymphoma (FL) express checkpoint molecules such as programmed death ligands 1 and 2 (PD-L1 and PD-L2) and are suppressing anti-tumor immune activity. Stimulation of peripheral blood mononuclear cells (PBMC) with PD-L1 (IO103) or PD-L2 (IO120) peptides can activate specific T cells inducing anti-regulatory functions including cytotoxicity against PD-L1/PD-L2-expressing cells. In this study, we vaccinated eight FL patients with PD-L1 and PD-L2 peptides following treatment with standard chemotherapy. Patients experienced grade 1–2 injection site reaction (5/8) and mild flu-like symptoms (6/8). One patient experienced neutropenia and thrombocytopenia during pseudo-progression. Enzyme-linked immunospot detected vaccine-specific immune responses in PBMC from all patients, predominately toward PD-L1. The circulating immune composition was stable during treatment; however, we observed a reduction regulatory T cells, however, not significant. One patient achieved a complete remission during vaccination and two patients had pseudo-progression followed by long-term disease regression. Further examination of these early signs of clinical efficacy of the dual-epitope vaccine in a larger study is warranted

    DataSheet_1_Anti-PD-L1/PD-L2 therapeutic vaccination in untreated chronic lymphocytic leukemia patients with unmutated IgHV.pdf

    No full text
    Chronic lymphocytic leukemia (CLL) patients with unmutated immunoglobulin heavy chain (IgHV) are at risk of early disease progression compared to patients with mutated IgHV. As a preventive strategy, we treated 19 previously untreated CLL patients with unmutated IgHV in a phase 1/2 trial (clinicaltrials.gov, NCT03939234) exploring the efficacy and toxicity of a therapeutic cancer vaccine containing peptides derived from programmed death ligand 1 (PD-L1) and ligand 2 (PD-L2), hoping to restore immunological control of the disease. According to the International Workshop on Chronic lymphocytic Leukemia (iwCLL) response criteria, no patients obtained a response; however, during follow-up, one patient had complete normalization of the peripheral lymphocyte count and remained in biochemical remission after a follow-up time of 15 months. At the end of treatment, one patient had progressed, and 17 patients had stable disease. During follow-up with a median time of 23.5 months since inclusion, seven patients had progressed, and eight patients had stable disease. The median time to first treatment (TTFT) from diagnosis was 90.3 months with a median follow-up time of 50.1 months. This apparent favorable outcome in TTFT needs to be investigated in a randomized setting, as our population may have been biased. More than 80% of patients obtained vaccine-specific immune responses, confirming the immunogenicity of the vaccine. The vaccine was generally well tolerated with only grade I–II adverse events. Although there were some signs of clinical effects, the vaccine seems to be insufficient as monotherapy in CLL, possibly due to a high tumor burden. The efficacy of the vaccine should preferably be tested in combination with novel targeted therapies or as a consolidating treatment.</p
    corecore