569 research outputs found

    The declining representativeness of the British party system, and why it matters

    Get PDF
    In a recent article, Michael Laver has explained ‘Why Vote-Seeking Parties May Make Voters Miserable’. His model shows that, while ideological convergence may boost congruence between governments and the median voter, it can reduce congruence between the party system and the electorate as a whole. Specifically, convergence can increase the mean distance between voters and their nearest party. In this article we show that this captures the reality of today’s British party system. Policy scale placements in British Election Studies from 1987 to 2010 confirm that the pronounced convergence during the past decade has left the Conservatives and Labour closer together than would be optimal in terms of minimising the policy distance between the average voter and the nearest major party. We go on to demonstrate that this comes at a cost. Respondents who perceive themselves as further away from one of the major parties in the system tend to score lower on satisfaction with democracy. In short, vote-seeking parties have left the British party system less representative of the ideological diversity in the electorate, and thus made at least some British voters miserable

    Noise auto-correlation spectroscopy with coherent Raman scattering

    Full text link
    Ultrafast lasers have become one of the most powerful tools in coherent nonlinear optical spectroscopy. Short pulses enable direct observation of fast molecular dynamics, whereas broad spectral bandwidth offers ways of controlling nonlinear optical processes by means of quantum interferences. Special care is usually taken to preserve the coherence of laser pulses as it determines the accuracy of a spectroscopic measurement. Here we present a new approach to coherent Raman spectroscopy based on deliberately introduced noise, which increases the spectral resolution, robustness and efficiency. We probe laser induced molecular vibrations using a broadband laser pulse with intentionally randomized amplitude and phase. The vibrational resonances result in and are identified through the appearance of intensity correlations in the noisy spectrum of coherently scattered photons. Spectral resolution is neither limited by the pulse bandwidth, nor sensitive to the quality of the temporal and spectral profile of the pulses. This is particularly attractive for the applications in microscopy, biological imaging and remote sensing, where dispersion and scattering properties of the medium often undermine the applicability of ultrafast lasers. The proposed method combines the efficiency and resolution of a coherent process with the robustness of incoherent light. As we demonstrate here, it can be implemented by simply destroying the coherence of a laser pulse, and without any elaborate temporal scanning or spectral shaping commonly required by the frequency-resolved spectroscopic methods with ultrashort pulses.Comment: To appear in Nature Physic

    Generalized Huygens principle with pulsed-beam wavelets

    Full text link
    Huygens' principle has a well-known problem with back-propagation due to the spherical nature of the secondary wavelets. We solve this by analytically continuing the surface of integration. If the surface is a sphere of radius RR, this is done by complexifying RR to R+iaR+ia. The resulting complex sphere is shown to be a real bundle of disks with radius aa tangent to the sphere. Huygens' "secondary source points" are thus replaced by disks, and his spherical wavelets by well-focused pulsed beams propagating outward. This solves the back-propagation problem. The extended Huygens principle is a completeness relation for pulsed beams, giving a representation of a general radiation field as a superposition of such beams. Furthermore, it naturally yields a very efficient way to compute radiation fields because all pulsed beams missing a given observer can be ignored. Increasing aa sharpens the focus of the pulsed beams, which in turn raises the compression of the representation.Comment: 49 pages, 14 figure

    The burden and dynamics of hospital-acquired SARS-CoV-2 in England

    Get PDF
    Hospital-based transmission had a dominant role in Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV) epidemics1,2, but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England, we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital admissions in this period). Analysis of time series data provided evidence that patients who themselves acquired SARS-CoV-2 infection in hospital were the main sources of transmission to other patients. Increased transmission to inpatients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognized scale of hospital transmission, have direct implications for targeting of hospital control measures and highlight the need to design hospitals better equipped to limit the transmission of future high-consequence pathogens

    Ca2+ Regulates the Drosophila Stoned-A and Stoned-B Proteins Interaction with the C2B Domain of Synaptotagmin-1

    Get PDF
    The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the ”-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca2+. The Ca2+-dependent interaction between the ”-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca2+ binding loop region that modulate the Ca2+-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca2+-binding loop region of C2B domain. The results indicate that Ca2+-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca2+-bound Synaptotagmin-1 associated synaptic vesicles
    • 

    corecore