48 research outputs found

    Assessing Glyphosate and Fluridone Concentrations in Water Column and Sediment Leachate

    Get PDF
    Purpose: In recreational water bodies, herbicides are widely used for controlling unwanted weeds, and impacts of herbicide residues on health risks to aquatic ecosystem is a serious concern. This study was aimed to improve the existing understanding of the deposition of herbicides from water column to bed sediment and leachate of herbicides from bed sediment to water column. We investigated the attachment of two herbicides with sediment and release from sediment: (1) Glyphosate; and (2) Fluridone. The goal of this study was to determine the deposition and release of Glyphosate and Fluridone in bed sediment of the Sacramento–San Joaquin River Delta.Materials and Methods: Field sampling was performed to collect water and sediment samples from Sacramento–San Joaquin River Delta. Bottom dredge sampler was used for collecting sediment samples and horizontal water bottle sampler was used for collecting water samples. A series of experiments were conducted to determine the attachment and release of Fluridone and Glyphosate from sediment at a different level of initial concentrations. For analyzing Fluridone and Glyphosate in sediment leachate and water, samples were processed using enzyme-linked immunosorbent assay (ELISA) based method.Results and Discussion: Observations showed that proportions of Glyphosate concentrations in water were higher than Fluridone concentrations in water, when both herbicides were inoculated in water in same quantity. On the contrary, the concentrations of Fluridone in sediment-bound leachate were higher than Glyphosate concentrations in sediment-bound leachate, regardless of the initial concentrations. Fluridone and Glyphosate concentrations in water column samples differed significantly (p < 0.05) over the time even initial concentrations of these herbicides were kept similar, which indicates that Fluridone interaction with water column was considerably different than the interaction of Glyphosate with the water column.Conclusions: Bed sediment can be an important sink and source for release of Fluridone and Glyphosate from bed sediment to the water column of an ambient water body. Significant concentrations of herbicides were deposited in bed sediment of Sacramento-San Joaquin Delta, and eventually the high concentrations of herbicides were observed in sediment leachate. Improved understanding of this important release pathway can provide much needed information to adequately address the impacts of particle attached herbicides on aquatic and ecological environment of a water body

    Comparing the effectiveness of chronic water column tests with the crustaceans

    No full text
    Standard U.S. Environmental Protection Agency laboratory tests are used to monitor water column toxicity in U.S. surface waters. The water flea Ceriodaphnia dubia is among the most sensitive test species for detecting insecticide toxicity in freshwater environments.Its usefulness is limited, however, when water conductivity exceeds 2,000μS/cm (approximately 1 ppt salinity) and test effectiveness is insufficient. Water column toxicity tests using the euryhaline amphipod Hyalella azteca could complement C. dubia tests; however, standard chronic protocols do not exist. The present study compares the effectiveness of two water column toxicity tests in detecting the toxicity of two organophosphate (OP) and two pyrethroid insecticides: the short-term chronic C. dubia test, which measures mortality and fecundity, and a 10-d H. azteca test, which measures mortality and growth. Sensitivity was evaluated by comparing effect data, and end point variability was evaluated by comparing minimum significant differences. Tests were performed in synthetic water and filtered ambient water to quantify the influence of water matrix on effect concentrations. The H. azteca test detected pyrethroid toxicity far more effectively, while the C. dubia test was more sensitive to OPs. Among endpoints, H. azteca mortality was most robust. The results demonstrate that the H. azteca test is preferable when conductivity of water samples is 2,000 to 10,000μS/cm or if contaminants of concern include pyrethroid insecticides. Environ. Toxicol. Chem. 2013;32:707-712. © 2012 SETAC
    corecore