1,886 research outputs found

    Cadmium sulfide in a Mesoproterozoic terrestrial environment

    Get PDF
    Peer reviewedPostprin

    Alignment and Aperture Scan at the Fermilab Booster

    Full text link
    The Fermilab booster has an intensity upgrade plan called the Proton Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour, which is almost double the current operation at 1.1E17 protons/hour. The beam loss in the machine is going to be the source of issues. The booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector. Several percent of the beam is lost within 3 msec after the injection. The aperture at injection energy was measured and compared with the survey data. The magnets are going to be realigned in March 2012 in order to increase the aperture. The beam studies, analysis of the scan and alignment data, and the result of the magnet moves will be discussed in this paper.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Information theoretic approach to interactive learning

    Full text link
    The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.Comment: 6 page

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    Using Tree Rings to Predict the Response of Tree Growth to Climate Change in the Continental United States during the Twenty-First Century

    Get PDF
    In the early 1900s, tree-ring scientists began analyzing the relative widths of annual growth rings preserved in the cross sections of trees to infer past climate variations. Now, many ring-width index (RWI) chronologies, each representing a specific site and species, are archived online within the International Tree-Ring Data Bank (ITRDB). Comparing annual tree-ring-width data from 1097 sites in the continental United States to climate data, the authors quantitatively evaluated how trees at each site have historically responded to interannual climate variations. For each site, they developed a climate-driven statistical growth equation that uses regional climate variables to model RWI values. The authors applied these growth models to predict how tree growth will respond to twenty-first-century climate change, considering four climate projections. Although caution should be taken when extrapolating past relationships with climate into the future, the authors observed several clear and interesting patterns in the growth projections that seem likely if warming continues. Most notably, the models project that productivity of dominant tree species in the southwestern United States will decrease substantially during this century, especially in warmer and drier areas. In the northwest, nonlinear growth relationships with temperature may lead to warming-induced declines in growth for many trees that historically responded positively to warmer temperatures. This work takes advantage of the unmatched temporal length and spatial breath of annual growth data available within the ITRDB and exemplifies the potential of this ever-growing archive of tree-ring data to serve in meta-analyses of large-scale forest ecology

    The thermodynamics of prediction

    Full text link
    A system responding to a stochastic driving signal can be interpreted as computing, by means of its dynamics, an implicit model of the environmental variables. The system's state retains information about past environmental fluctuations, and a fraction of this information is predictive of future ones. The remaining nonpredictive information reflects model complexity that does not improve predictive power, and thus represents the ineffectiveness of the model. We expose the fundamental equivalence between this model inefficiency and thermodynamic inefficiency, measured by dissipation. Our results hold arbitrarily far from thermodynamic equilibrium and are applicable to a wide range of systems, including biomolecular machines. They highlight a profound connection between the effective use of information and efficient thermodynamic operation: any system constructed to keep memory about its environment and to operate with maximal energetic efficiency has to be predictive.Comment: 5 pages, 1 figur
    corecore