
1 
 

Cadmium Sulphide in a Mesoproterozoic terrestrial environment 1 

 2 

J. PARNELL, J. STILL, S. SPINKS, W. THAYALAN and S. BOWDEN 3 

School of Geosciences, University of Aberdeen, King’s College, Aberdeen AB24 3UE, United Kingdom 4 

ABSTRACT 5 

Cadmium sulphide mineralization occurs in grey-black shales of the late Mesoproterozoic Stoer Group, 6 

northwest Scotland. Cd is strongly redox-controlled, and normally concentrated in anoxic marine 7 

sediments or epigenetic mineralization involving organic matter. However the Stoer Group was 8 

deposited in a terrestrial environment, including lacustrine deposits of shale. At the limited levels of 9 

atmospheric oxygenation in the Mesoproterozoic (~10% of present), the near-surface environment 10 

could have fluctuated between oxic and anoxic, allowing fractionation of Cd from Zn, and the formation 11 

of Cd sulphide rather than Cd-bearing sphalerite. This occurrence emphasizes the importance of the 12 

Stoer Group as a record of the Mesoproterozoic terrestrial environment. 13 
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 16 

Introduction 17 

We report Cd sulphide mineralization in the Mesoproterozoic of Scotland. The occurrence of Cd 18 

sulphides in rocks deposited in a terrestrial environment is unusual, and we discuss this in the context of 19 

the limited oxygenation of the Mesoproterozoic atmosphere. 20 
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Cadmium is a trace element normally found substituting for Zn in the Zn sulphide mineral sphalerite. 21 

However it may, rarely, form the Cd sulphide greenockite, especially in anoxic environments (Ripley et 22 

al. 1990, Lesven et al. 2010, Fleurance et al. 2013). Thus, in sedimentary rocks, Cd is found enriched in 23 

sphalerite-bearing deposits such as Mississippi Valley-type ores (Schwartz 2000, Ye et al. 2012) and in 24 

marine black shales (e.g. Ripley et al. 1990, Perkins & Foster 2004, Falk et al. 2006, Fleurance et al. 25 

2013). 26 

Cadmium is a highly redox-sensitive element (van Geen et al. 1995, Rosenthal et al. 1995, Thomson et al. 27 

2001, Pailler et al. 2002, Chaillou et al. 2002, Pufahl & Hiatt 2012). It precipitates in sediments as the 28 

sulphide greenockite (CdS) in anoxic conditions, and is liberated into solution in oxidizing conditions. The 29 

sensitivity of Cd to oxygen levels is so marked that seasonal fluctuations in the chemistry of modern 30 

near-surface waters may be enough to alternate between sulphide deposition and solution (Holmes et 31 

al. 1974). Cd is therefore a valuable element in assessing ancient levels of oxygenation, and is one of 32 

several bio-essential metals whose limited availability during the low-oxygen conditions of the early 33 

Proterozoic could have inhibited the evolution of complex life (Anbar & Knoll 2002, Saito et al. 2003, 34 

Morel 2008). 35 

The Cd sulphide documented here is in the late Mesoproterozoic Stoer Group, Torridonian Supergroup, 36 

North West Scotland. The Stoer Group was deposited in a continental setting including alluvial fan, 37 

fluviatile and lacustrine environments (Stewart 2002). The succession includes a distinctive unit of grey-38 

black shale in the Poll a’ Mhuilt Member of the Bay of Stoer Formation (Fig. 1), interpreted as lacustrine 39 

(Stewart 2002, Andrews et al. 2010). The lake waters and groundwaters were carbonate-rich, evidenced 40 

by calcite in the matrix of the black shale, a discrete limestone bed at the base of the black shale (Fig. 1) 41 

and calcite cements in the subjacent/superjacent shales. This unit closely follows a meteorite impact 42 

deposit dated at 1.18 Ga (Parnell et al. 2011). Palaeomagnetic studies suggest a low latitude in the 43 
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northern hemisphere (Darabi & Piper 2004). The rocks have experienced low-grade regional 44 

metamorphism, but their sedimentary characteristics are perfectly preserved. 45 

Methodology 46 

Samples of the shale were collected from the north side of the Bay of Stoer (section described by 47 

Stewart 2002, National Grid Reference NC 032285). The samples were prepared as polished thin 48 

sections and examined using an ISI ABT-55 scanning electron microscope with Link Analytical 10/55S 49 

EDAX facility. Measurements were made using elemental Zn, Se and Fe standards, and a pyrite (53.41 % 50 

S) standard. The carbon content of the shale was measured using a LECO CS225 elemental analyzer. 51 

Results 52 

Disseminated sulphides occur in a grey-black shale, whose mean organic carbon content is 0.22% (n=69). 53 

The shale is composed predominantly of quartz grains with a clay mineral matrix. Most sulphide crystals 54 

are in the size range 10 to 100 microns, but some pyrite nodules are on a millimeter-scale. The sulphides 55 

occur as clusters of sub-micron crystals and as single crystals (Figs. 2, 3). The sulphate mineral barite also 56 

occurs in the same rock. The most common phase is an iron sulphide, whose stoichiometry and cubic 57 

habit indicates is pyrite. Three other sulphides occur: Zn sulphide, Pb sulphide and Cd sulphide, which 58 

are assumed to be sphalerite, galena and greenockite. The Fe sulphide also contains variable traces of 59 

Cu. The sphalerite and pyrite both show micron-scale intergrowths with barite, which appears to be 60 

paragenetically later than the sulphides (Fig. 2). Paragenesis between the sulphides is not normally 61 

evident, but in some cases the Cd sulphide appears to be earlier than the sphalerite (Fig. 2). 62 

Examination of ten crystal clusters showed that the Cd sulphide has a consistent composition. 63 

Quantitative analyses from crystals larger than 10 microns (Table 1) record trace levels of Zn (1.74 to 64 

5.90 wt.%) and Fe (0.14 to 1.00 wt.%). The mean composition is 74.7 wt. % Cd, 4.65 wt. % Zn, 0.40 wt. % 65 
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Fe and 21.6 wt. % S. Sphalerite crystals also contain trace levels of Cd up to 0.5 wt. %. A whole rock 66 

analysis of grey-black shale measured 14.3 ppm Cd and 132 ppm Zn. The traces of Zn in the Cd sulphide 67 

are also evident in X-ray maps (Fig. 3). 68 

The timing of sulphide mineralization cannot be determined with absolute certainty. However, the 69 

larger pyrite nodules have a pre-compaction morphology (Parnell et al. 2010) and the sulphides 70 

mineralize uncompacted pseudomorphs after gypsum (Fig. 2), suggesting that they were precipitated 71 

during early diagenesis, i.e. during the Mesoproterozoic. The Stoer Group sulphide crystal clusters are 72 

closely comparable in size and morphology to those forming in modern sulphide-rich wetlands, where 73 

anaerobic conditions have been deliberately engineered (Gammons & Frandsen 2001), further 74 

consistent with an early origin for them. The Pb-Zn-Cd sulphide assemblage has not been detected in the 75 

unconformably overlying Diabaig Formation of the early Neoproterozoic (~1.0 Ga) Torridon Group, 76 

which contains grey shales with limited organic carbon contents comparable to those of the Stoer 77 

Group. 78 

Discussion 79 

Mineralogy 80 

The Cd sulphide is most likely to be the mineral greenockite, which occurs in comparable carbonaceous 81 

sediments elsewhere (Ripley et al. 1990, Lesven et al. 2010, Fleurance et al. 2013). Cadmium forms 82 

mixed sulphides with Zn and Fe, and other published analyses for greenockite show levels of Zn and Fe 83 

very similar to those of the Stoer Group Cd sulphide (Table 2; Patterson 1985, Marcoux et al. 1993, 84 

Mogessie et al. 2009). Another Cd sulphide, hawleyite, a cubic dimorph of the greenockite, also occurs 85 

(Traill & Boyle 1955), but is much less widely reported. However, the significance of the occurrence lies 86 

in the redox control of Cd sulphide precipitation. 87 
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Oxygenation in the Stoer Group environment 88 

The section in which the Cd sulphide occurs is one in which the degree of oxidation requires careful 89 

judgment. The low organic carbon contents for the grey-black shale probably represent only about 30% 90 

of the organic carbon content before thermal maturation to their current state of mild regional 91 

metamorphism (Cornford 1998), suggesting initial values of about 0.7%. The initial value could have 92 

been even greater, if some carbon had been utilized during anaerobic degradation. However, even these 93 

corrected values are not high for shales, and not comparable to anoxic seafloor sediments which 94 

typically would be several times richer in carbon. Bearing in mind that the oxygen content in the late 95 

Mesoproterozoic atmosphere was about 10% of the present level (Canfield 2005), and bioturbation had 96 

not evolved, oxygen exposure times for organic matter (Hartnett et al. 1998) would have been much 97 

lower than today. Hence organic carbon was not oxidized so readily as in younger rocks (Canfield & 98 

Farquhar 2009), and the carbon content of the Stoer Group sediments is modest in those circumstances. 99 

There was clearly a contrast in depositional conditions between the shales which are grey-black and the 100 

overlying and underlying sandstones and shales which are red. However the contrast may have been 101 

limited: The grey-black shales contain numerous pseudomorphs after gypsum (Stewart 2002), indicating 102 

that sulphur was in the oxidized sulphate form during deposition. The Stoer Group sulphides were 103 

precipitated during early diagenesis, but sulphur isotope compositions indicate a contribution from both 104 

sulphide reducers and sulphide oxidizers (Parnell et al. 2010), and the petrographic observations of post-105 

sulphide barite also show that sulphides were re-oxidized back to sulphates. The evidence indicates that 106 

the redox conditions were fluctuating close to the boundary between reducing and oxidizing. The 107 

occurrence of metalliferous reduction spheroids in red shales lower down in the Bay of Stoer Formation 108 

(Fig. 1) also reflects this fine balance of redox conditions (Spinks et al. 2010). 109 

Metal sources 110 
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The measured 14.3 ppm Cd in a Stoer Group sample is more than an order of magnitude greater than a 111 

mean value of 0.8 ppm for shales (Fergusson 1990). The level of oxygenation was high enough by the 112 

Mesoproterozoic to allow weathering of sulphides on the continents (Reinhard et al. 2009). Anomalous 113 

sources of Zn, and hence Cd, in the hinterland of the Stoer Group include Palaeoproterozoic pegmatites 114 

in the Lewisian metamorphic basement (von Knorring & Dearnley 1960, Institute of Geological Sciences 115 

1982) and exhalative sulphide deposits in the Palaeoproterozoic Loch Maree Group (Jones et al. 1987). 116 

Both the Lewisian basement and the Loch Maree Group are unconformably overlain by, and could have 117 

contributed detritus to, the Stoer Group (Stewart 2002). The meteorite impact event that created the 118 

Stac Fada Member below could have been a source of metal, but metallic phases have not been 119 

detected in samples of the Stac Fada Member, so this is unlikely. 120 

Cadmium sulphide precipitation 121 

The crustal abundance of Zn is about 500 times that of Cd, so the occurrence of Cd sulphide, rather than 122 

Cd-bearing sphalerite, calls for comment. Sphalerite is present in the rocks, so it was available to host 123 

the Cd. The ratio of Zn to Cd in natural waters varies widely, suggesting that major fractionation occurs 124 

in weathering and transport pathways and during subsequent burial in sediments (Nolting et al. 1999, 125 

Gerringa et al. 2001). This fractionation will reflect different responses to fluctuating redox and ionic 126 

strength values in ambient waters. Zinc and cadmium can both cycle between precipitation as sulphides 127 

and dissolution back into pore waters during seasonal fluctuations in water oxygenation (Holmes et al. 128 

1974, Framson & Leckle 1978). The stability constants of greenockite are greater than those of 129 

sphalerite (Dyrssen 1988). Consequently, Zn will redissolve from sediment back into pore waters at 130 

lower oxygen concentrations than Cd (Gerringa et al. 2001), resulting in higher Zn/Cd ratios in the pore 131 

waters than in the original depositional waters. At the limited and fluctuating oxygen levels in the Stoer 132 

Group sediments, there was potential for substantial fractionation of the two metals by repeated cycles 133 
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of precipitation and dissolution, and selective concentration of Cd in the relatively organic-rich grey-134 

black shale facies, but not in the red facies. Modelling of groundwater geochemistry is restricted by our 135 

limited knowledge of the content of oxygen and other volatile species. However, we can assume that 136 

with depth the sediment was increasingly anoxic, and the ratio of sulphide to bicarbonate would 137 

increase. A phase diagram for the Cd-Zn-O-H-S-C system (Fig. 4, after Schwartz 2000) shows that the 138 

stability field for cadmium sulphide is greater than that for zinc sulphide, so they are likely to become 139 

fractionated under conditions of fluctuating sulphide/bicarbonate ratio, as is observed in the Stoer 140 

Group. Another example of fractionation of Cd from Zn and consequent precipitation of Cd sulphide in 141 

conditions of limited oxygenation, in Zn-Pb sulphide ore deposits, is given by Young et al. (1987). 142 

Occurrences of Cd enrichment in Phanerozoic sedimentary rocks are almost exclusively in marine anoxic 143 

rocks or Mississippi Valley-type mineralization which typically include organic matter. The terrestrial 144 

occurrence of Cd sulphide in the Mesoproterozoic Stoer Group is therefore distinctive. The 145 

Mesoproterozoic non-marine Nonesuch Shale, USA, which is almost coeval with, and commonly 146 

compared with, the Stoer Group (Stewart 2002, Parnell et al. 2012, Strother 2012), also contains Cd 147 

sulphide mineralization. The Nonesuch Shale is organic-rich, like the Stoer Group (Smith 1990): the 148 

mean carbon content is greater in the Nonesuch Shale, but both represent anoxic environments. The 149 

Nonesuch Shale Cd sulphide has been alternatively interpreted as syngenetic or epigenetic (Brown 1971, 150 

1974). Additionally, near-coeval black shale in Arctic Canada, interpreted as a rift deposit not fully linked 151 

to the open ocean, also contains a Cd enrichment (Turner & Kamber 2012). The occurrence of at least 152 

two examples in Mesoproterozoic terrestrial rocks is striking and suggests an environment distinct from 153 

that in younger rocks. The most distinct aspect of the environment was the lower level of oxygenation. 154 

We cannot exclude a biological role in the Cd sulphide precipitation, especially given its occurrence in 155 

terrestrial sediments containing organic carbon. Lacustrine algae, the assumed progenitor of the Stoer 156 
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Group organic matter, are today concentrating Cd in the Great Lakes (Intwala et al. 2008), and microbial 157 

activity is known to immobilize Cd in soils (Kurek & Bollag 2004). Further insight onto the possibilities of 158 

a genetic relationship to biological activity may be gained in the future through Cd isotope 159 

measurements (Ripperger et al. 2007). 160 

Conclusions 161 

The occurrence of Cd sulphide in the Mesoproterozoic sediments of the Stoer Group is unusual because 162 

Cd normally occurs as a trace component of sphalerite. However it can be understood in the context of 163 

low oxygenation of the atmosphere during the Mesoproterozoic. In those circumstances, even near-164 

surface sediments with only limited organic carbon concentrations were periodically anoxic, when Cd 165 

sulphide could precipitate. This may have been a time when the oxygen content was high enough to 166 

cause sulphide weathering on the continents, and subsequent transport of metals and sulphate, but 167 

sufficiently limited to cause their ready fixation as sulphides in terrestrial sediments. 168 

 169 
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 289 

 290 

Table 1. Compositions (wt. %) of Cadmium Sulphide Crystals in Stoer Group 291 

  

wt% 1 2 3 4 5 6 7 8 9 10 

Cd 72.69 74.75 73.12 76.94 77.59 73.88 72.19 76.69 73.55 75.98 

Fe 0.21 0.28 0.34 0.14 0.38 0.62 0.10 0.30 0.42 0.30 

Zn 5.06 4.03 5.90 1.94 2.12 3.21 4.86 1.74 3.75 2.65 

S 21.67 21.61 22.13 21.66 21.50 21.29 22.37 21.02 21.62 21.08 

Total 99.62 100.67 101.50 100.68 101.59 99.01 100.41 99.75 99.34 100.01 

 292 

Table 2. Mean Compositions (wt. %) of Cadmium Sulphide from Stoer Group (this paper) and 293 

Greenockite in Literature (see text) 294 

wt% Argentina (n = 8) Australia (n = 6) Indonesia (n = 20) Scotland (n = 10) 

Cd 71.89 71.3 72.95 74.74 

Fe <0.28 NQ NQ 0.40 

Zn 4.78 6.65 4.76 4.65 

S 22.68 22.5 21.95 21.60 

Total 99.34 100.45 99.66 101.39 

 295 
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NQ = Not Quantified, n = Number of grains analysed 296 

 297 

 298 

Figure Captions 299 

 300 

Fig. 1. Location maps for Bay of Stoer (BoS) locality, and summary geological succession for Bay of Stoer 301 

showing horizon yielding Cd sulphide. 302 

Fig. 2. Backscattered electron micrographs of sulphides in grey-black shale, Bay of Stoer. A, crystal 303 

cluster of greenockite (light grey) and galena (bright); B, rhomboid pseudomorph after gypsum, 304 

mineralized by pyrite (dull grey), then subsequently by barite (bright). 305 

Fig. 3. Backscattered  electron micrograph and X-ray maps for cadmium sulphide crystal, Bay of Stoer. A, 306 

crystal cluster of greenockite and adjacent smaller cluster of sphalerite; B, X-ray map for cadmium; D. X-307 

ray map for zinc, showing traces of zinc in greenockite, and zinc-rich nature of smaller crystal cluster. 308 

Image field width 100 microns. 309 

Fig. 4. Phase diagram for the Zn-Cd-O-H-S-C system at 25 °C (after Schwartz 2000). Greater stability field 310 

for Cd sulphide than Zn sulphide would enhance fractionation between the metals as 311 

bicarbonate/sulphide ratios fluctuated. 312 
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