145 research outputs found

    Platinum group element mineralization at Musongati (Burundi) : concentration and Pd-Rh distribution in pentlandite

    Get PDF
    The mafic-ultramafic intrusions of the Karagwe-Ankole belt in Burundi are considered as a new potential source for platinum group elements (PGE). The intrusions have mainly been studied for their PGE potential with regard to PGE concentration, but the mineralogical distribution of PGE has not been examined to the same level. This study focuses on the Pd and Rh distribution in pentlandite of ultramafic rocks of the Musongati layered intrusion. The results are based on whole rock and pentlandite analyses which were incorporated into a mass balance. Palladium proportions in pentlandite vary between 4 and 69%. Rhodium is present in proportions ranging from 1-39% in pentlandite. Other PGE distributions could not be determined in pentlandite due to concentrations below detection limits. The results from this study demonstrate that Pd and Rh are hosted by sulfides since sulfur saturation of the magma occurred early on, perhaps before or simultaneously with the precipitation of silicate minerals. Based on these findings, a preliminary model for the mineralization of PGE in the Musongati intrusion is proposed

    Metamorphic and metasomatic evolution of the Western Domain of the Karagwe-Ankole Belt (Central Africa)

    Get PDF
    The tectonometamorphic evolution of the Western Domain of the Karagwe-Ankole Belt, containing widespread granite-related W-Nb-Ta-Sn mineralization in pegmatites and hydrothermal quartz veins of Early Neoproterozoic age, is largely unknown. This study aims to characterize the Meso- and Neoproterozoic metamorphism and metasomatism in the Karagwe-Ankole Belt, to reconstruct the temperature evolution and to investigate its temporal relation to deformation and the widespread granite magmatism and mineralization. A quantitative geothermometric study was conducted on metasiltstones and amphibolites, and applies thin section petrography, garnet-biotite and chlorite geothermometry on samples collected in the representative KibuyeGitarama-Gatumba area in West Rwanda. The presence of garnet, staurolite and kyanite in metasiltstones, and hornblende and andesine-labradorite feldspar in amphibolites indicates prograde Barrovian metamorphism up to syn-to post-deformational (D1 or D2) lower amphibolite facies (up to 630 degrees C). This peak metamorphism was followed by post-D2 greenschist facies metamorphism (c. 525 degrees C-440 degrees C; garnet, biotite, chlorite, muscovite in metasiltstone), probably related to the East African Orogeny as part of the Gondwana assembly. A geothermometric evolution with high temperature conditions ( > 500 degrees C) at least from the flare-up of Early Neoproterozoic tin granites and their metasomatic haloes onwards for most of the Neoproterozoic is proposed, in close correspondence with the geodynamic evolution of the neighboring terranes. Additionally, this high temperature regime is an important factor to be taken into account when interpreting thermal diffusion-sensitive geochronological data

    Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo)

    No full text
    © 2018 Elsevier Ltd The megabreccias in the Katanga part of the Neoproterozoic Central African Copperbelt contain up to several km-long blocks and fragments of the Mines Subgroup which host most of the stratiform Cu-Co deposits. New observations, particularly on cores from boreholes drilled at Luiswishi indicate three types of fracturing: 1) brittle post-folding in the Mines Subgroup; 2) hydraulic; and 3) ductile in soft incompetent siltstones of the R.A.T. and Dipeta subgroups. These fracturing phases dislocated the Roan succession into blocks and fragments and, in particular, clearly showed that there is an evolution from an in situ hydraulic fracturing, to a heterometric brecciation implying some movement and abrasion of the fragments. The process points to significant compression, and was accompanied by fluid expulsion and precipitation of dolomite after decompression. Fluid inclusion microthermometry in dolomite grains shows that the fluids were of high salinity and high temperature, suggesting dissolution of evaporites most likely contained in the Roan sedimentary pile. These saline fluids allowed the fluidization of the breccias, facilitating the displacement of the nappes, pinching out (extrusion-like) megabreccias along thrust-faults, and resulting in intrusion of breccias between the blocks or into large fractures. Breccias between the blocks are clearly identified as friction breccias. They contain a fine material, as part of the matrix, resulting from abrasion of the fragments during transportation. Abrasion and attrition explain the rounding of the fragments. A late cementation phase from less saline and lower temperature fluids suggests the addition of meteoric water in the system, and the mixing with the ambient fluids. The minimum burial depth of the meteoric water incursion is estimated at 2.8 km. Such under-saturated fluids may have contributed to the dissolution of residual evaporites and of the evaporitic material from the Kiubo rocks at the base of the nappes, and led to further brecciation, possibly explaining the multi-phase features of the breccia. The megabreccias occur at the base of the thrusts sheets and are marked by thrust-fault zones. Results of the study support a process of formation of the megabreccias related to a fold-and-trust event, and invalidate a syn-orogenic sedimentary origin as an olistostrome formed by subaqueous conglomeratic debris flows and clastic syn-orogenic sediments. They also contradict a pure salt tectonic hypothesis that propose the extrusions and enlargements of allochthonous evaporites-gigabreccia before the Lufilian deformation. However, the model is compatible with a “fluid behaviour” of pressured saline fluids trapped in folds and/or thrust sheets, and resulting from evaporites dissolution at variable depth.status: publishe
    • …
    corecore