14 research outputs found

    Neandertal introgression partitions the genetic landscape of neuropsychiatric disorders and associated behavioral phenotypes

    Get PDF
    Despite advances in identifying the genetic basis of psychiatric and neurological disorders, fundamental questions about their evolutionary origins remain elusive. Here, introgressed variants from archaic humans such as Neandertals can serve as an intriguing research paradigm. We compared the number of associations for Neandertal variants to the number of associations of frequency-matched non-archaic variants with regard to human CNS disorders (neurological and psychiatric), nervous system drug prescriptions (as a proxy for disease), and related, non-disease phenotypes in the UK biobank (UKBB). While no enrichment for Neandertal genetic variants were observed in the UKBB for psychiatric or neurological disease categories, we found significant associations with certain behavioral phenotypes including pain, chronotype/sleep, smoking and alcohol consumption. In some instances, the enrichment signal was driven by Neandertal variants that represented the strongest association genome-wide. SNPs within a Neandertal haplotype that was associated with smoking in the UKBB could be replicated in four independent genomics datasets

    SIGLEC1 (CD169): a marker of active neuroinflammation in the brain but not in the blood of MS patients

    Get PDF
    OBJECTIVE: We aimed to evaluate SIGLEC1 (CD169) as a biomarker in Multiple Sclerosis (MS) and Neuromyelitis optica spectrum disorder (NMOSD) and to evaluate the specificity of SIGLEC1+ myeloid cells for demyelinating diseases. METHODS: We performed flow cytometry-based measurements of SIGLEC1 expression on monocytes in 86 MS patients, 41 NMOSD patients and 31 healthy controls. Additionally, we histologically evaluated the presence of SIGLEC1+ myeloid cells in acute and chronic MS brain lesions as well as other neurological diseases. RESULTS: We found elevated SIGLEC1 expression in 16/86 (18.6%) MS patients and 4/41 (9.8%) NMOSD patients. Almost all MS patients with high SIGLEC1 levels received exogenous interferon beta as an immunomodulatory treatment and only a small fraction of MS patients without interferon treatment had increased SIGLEC1 expression. SIGLEC1+ myeloid cells were abundantly present in active MS lesions as well as in a range of acute infectious and malignant diseases of the central nervous system, but not chronic MS lesions. CONCLUSION: In our cohort, SIGLEC1 expression on monocytes was – apart from those patients receiving interferon treatment – not significantly increased in patients with MS and NMOSD, nor were levels associated with more severe disease. The presence of SIGLEC1+ myeloid cells in brain lesions could be used to investigate the activity in an inflammatory CNS lesion

    SIGLEC1 (CD169): a marker of active neuroinflammation in the brain but not in the blood of multiple sclerosis patients

    Get PDF
    We aimed to evaluate SIGLEC1 (CD169) as a biomarker in multiple sclerosis (MS) and Neuromyelitis optica spectrum disorder (NMOSD) and to evaluate the presence of SIGLEC1(+) myeloid cells in demyelinating diseases. We performed flow cytometry-based measurements of SIGLEC1 expression on monocytes in 86 MS patients, 41 NMOSD patients and 31 healthy controls. Additionally, we histologically evaluated the presence of SIGLEC1(+) myeloid cells in acute and chronic MS brain lesions as well as other neurological diseases. We found elevated SIGLEC1 expression in 16/86 (18.6%) MS patients and 4/41 (9.8%) NMOSD patients. Almost all MS patients with high SIGLEC1 levels received exogenous interferon beta as an immunomodulatory treatment and only a small fraction of MS patients without interferon treatment had increased SIGLEC1 expression. In our cohort, SIGLEC1 expression on monocytes was—apart from those patients receiving interferon treatment - not significantly increased in patients with MS and NMOSD, nor were levels associated with more severe disease. SIGLEC1(+) myeloid cells were abundantly present in active MS lesions as well as in a range of acute infectious and malignant diseases of the central nervous system, but not chronic MS lesions. The presence of SIGLEC1(+) myeloid cells in brain lesions could be used to investigate the activity in an inflammatory CNS lesion

    Reduced mitochondrial respiration in T cells of patients with major depressive disorder

    Get PDF
    Converging evidence indicates that major depressive disorder (MDD) and metabolic disorders might be mediated by shared (patho)biological pathways. However, the converging cellular and molecular signatures remain unknown. Here, we investigated metabolic dysfunction on a systemic, cellular, and molecular level in unmedicated patients with MDD compared with matched healthy controls (HC). Despite comparable BMI scores and absence of cardiometabolic disease, patients with MDD presented with significant dyslipidemia. On a cellular level, T cells obtained from patients with MDD exhibited reduced respiratory and glycolytic capacity. Gene expression analysis revealed increased carnitine palmitoyltransferase IA (CPT1a) levels in T cells, the rate-limiting enzyme for mitochondrial long-chain fatty acid oxidation. Together, our results indicate metabolic dysfunction in unmedicated, non-overweight patients with MDD on a systemic, cellular, and molecular level. This evidence for reduced mitochondrial respiration in T cells of patients with MDD provides translation of previous animal studies regarding a putative role of altered immunometabolism in depression pathobiology

    Children’s and Adolescents’ Happiness Conceptualizations at School and their Link with Autonomy, Competence, and Relatedness

    Get PDF
    Previous research on children’s and adolescents’happiness either focused on their conceptualisations or the link between self-reported happiness with different outcomes. However, very few studies have connected both approaches to better understand children’s and adolescents’ happiness. To address this gap, we used a mixed-method approach, to investigate if the conceptualizations of happiness at school of 744 British children and adolescents could signal differences in autonomy, competence, and relatedness. An initial coding of the responses showed thirteen conceptualizations (i.e., positive feelings, harmony/balance, leisure, friends, getting good grades, non-violence, moral actions, purpose, autonomy, competence, teachers, emotional support, and learning). Log-linear models showed that some of the conceptualizations differed across both age groups and gender. Latent class analysis showed that happiness conceptualizations could be classified in five different groups. Interestingly, whereas for children there were no differences; for adolescents, there were differences between classes in their levels of autonomy and relatedness. The implications of these findings for promoting students' well-being at school are discussed
    corecore