26 research outputs found

    Influence of Annular Dynamics and Material Behavior in Finite Element Analysis of Barlow’s Mitral Valve Disease

    Get PDF
    Barlow’s disease affects the entire mitral valve apparatus, by altering several of the fundamental mechanisms in the mitral valve which ensures unidirectional blood flow between the left atrium and the left ventricle. In this paper, a finite element model of a patient diagnosed with Barlow’s disease with patient-specific geometry and boundary conditions is presented. The geometry and boundary conditions are extracted from the echocardiographic assessment of the patient prior to surgery. Material properties representing myxomatous, healthy human and animal mitral valves are implemented and computed response are compared with each other and the echocardiographic images of the patient. This study shows that the annular dilation observed in Barlow’s patients controls several aspects of the mitral valve behavior during ventricular systole. The coaptation of the leaflets is observed to be highly dependent on annular dilation, and the coaptation area reduces rapidly at the onset of mitral regurgitation. Furthermore, the leaflet material implementation is important to predict lack of closure in the FE model correctly. It was observed that using healthy human material parameters in the Barlow’s diseased FE geometry gave severe lack of closure from the onset of mitral regurgitation, while myxomatous material properties showed a more physiological leakage.publishedVersio

    Correlation between Murmurs and Echocardiographic Findings; From an Imaging Cardiologist Point of View

    Get PDF
    A heart murmur in adults is a common reason for referral for echocardiography at most general cardiology clinics in Europe. A murmur may indicate either a mild age-related valvular calcification or regurgitation, or represent a significant heart valve disease requiring valvular intervention. Generally, the correlation between murmurs by auscultation and severity of heart valve disease by echocardiography is poor. Particularly, the severity and characterization of diastolic murmurs by auscultation may poorly correlate with echocardiographic findings. This narrative review aims to summarize the differential diagnoses of physiological and pathological murmurs, describes the current referral practice of murmur patients for echocardiography, and presents a single-center experience on the correlation of auscultation and echocardiographic findings with a particular focus on aortic and mitral valve diseases. A careful auscultation of the heart prior to the echocardiogram is mandatory and may help to predict the echocardiographic findings and their interpretation in view of the clinical information. The correlation between clinical examination, point of care ultrasound and standard echocardiography is a matter of continued exploration.publishedVersio

    Finite element analysis of mitral valve annuloplasty in Barlow's disease

    Get PDF
    Barlow’s Disease affects the entire mitral valve apparatus causing mitral regurgitation. Standard annuloplasty procedures lead to an average of 55% annular area reduction of the end diastolic pre-operative annular area in Barlow’s diseased valves. Following annular reduction, mitral valvuloplasty may be needed, usually with special focus on the posterior leaflet. An in silico pipeline to perform annuloplasty by utilizing the pre- and -postoperative 3D echocardiographic recordings was developed. Our objective was to test the hypothesis that annuloplasty ring sizes based on a percentage (10%–25%) decrease of the pre-operative annular area at end diastole can result in sufficient coaptation area for the selected Barlow’s diseased patient. The patient specific mitral valve geometry and finite element model were created from echocardiography recordings. The post-operative echocardiography was used to obtain the artificial ring geometry and displacements, and the motion of the papillary muscles after surgery. These were used as boundary conditions in our annuloplasty finite element analyses. Then, the segmented annuloplasty ring was scaled up to represent a 10%, 20% and 25% reduction of the pre-operative end diastolic annular area and implanted to the end diastolic pre-operative finite element model. The pre-operative contact area decrease was shown to be dependent on the annular dilation at late systole. Constraining the mitral valve from dilating excessively can be sufficient to achieve proper coaptation throughout systole. The finite element analyses show that the selected Barlow’s diseased patient may benefit from an annuloplasty ring with moderate annular reduction alone.publishedVersio

    Impact of aortic valve stenosis on myocardial deformation in different left ventricular levels: A three-dimensional speckle tracking echocardiography study

    Get PDF
    Background: Global systolic left ventricular (LV) myocardial function progressively declines as degenerative aortic valve stenosis (AS) progresses. Whether this results in uniformly distributed deformation changes from base to apex has not been investigated. Methods: Eighty-five AS patients underwent three-dimensional (3D) echocardiography in this cross-sectional study. Patients were grouped by peak jet velocity into mild (n = 32), moderate (n = 31), and severe (n = 22) AS. 3D speckle tracking derived strain, rotation, twist, and torsion were obtained to assess global LV function and myocardial function at the apical, mid, and basal levels. Results: Global longitudinal strain (GLS) was lower in patients with severe AS (-16.1 ± 2.4% in mild, -15.5 ± 2.5% in moderate, and -13.5 ± 3.0% in severe AS [all p < .01]). Peak basal and mid longitudinal strain (LS), basal rotation and twist from apical to basal level followed the same pattern, while peak apical LS was higher in moderate AS compared to severe AS (all p < .05). In multivariate analyses, lower GLS was particularly associated with male sex, higher body mass index and peak aortic jet velocity, lower basal LS with higher filling pressure (E/e’) and LV mass, lower mid LS with higher RWT and presence of AS symptoms, and lower apical LS with male sex and higher systolic blood pressure, respectively (all p < .05). Conclusion: Using 3D speckle tracking echocardiography reveals regional and global changes in LV mechanics in AS related to the severity of AS, LV remodeling and presence of cardiovascular risk factors.publishedVersio

    Mitral annular dynamics are influenced by left ventricular load and contractility in an acute animal model

    Get PDF
    The purpose of this study was to investigate the effects of loading conditions and left ventricular (LV) contractility on mitral annular dynamics. In 10 anesthetized pigs, eight piezoelectric transducers were implanted equidistantly around the mitral annulus. High-fidelity catheters measured left ventricular pressures and the slope of the end-systolic pressure-volume relationship (Ees) determined LV contractility. Adjustments of pre- and afterload were done by constriction of the inferior caval vein and occlusion of the descending aorta. Mitral annulus area indexed to body surface area (MAAi ), annular circularity index (ACI), and nonplanarity angle (NPA) were calculated by computational analysis. MAAi was more dynamic in response to loading interventions than ACI and NPA. However, MAAi maximal cyclical reduction (−Δr) and average deformational velocity (−v) did not change accordingly (p=0.31 and p=0.22). Reduced Ees was associated to attenuation in MAAi -Δr and MAAi -v (r 2=0.744; p=0.001 and r 2=0.467; p=0.029). In conclusion, increased cardiac load and reduced LV contractility may cause deterioration of mitral annular dynamics, likely impairing coaptation and increasing susceptibility to valvular incompetence.publishedVersio

    Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that real-time three-dimensional (3D) echocardiography (RT3DE) gives more accurate and reproducible left ventricular (LV) volume and ejection fraction (EF) measurements than traditional two-dimensional methods. A new semi-automated tool (4DLVQ) for volume measurements in RT3DE has been developed. We sought to evaluate the accuracy and repeatability of this method compared to a 3D echo standard.</p> <p>Methods</p> <p>LV end-diastolic volumes (EDV), end-systolic volumes (ESV), and EF measured using 4DLVQ were compared with a commercially available semi-automated analysis tool (TomTec 4D LV-Analysis ver. 2.2) in 35 patients. Repeated measurements were performed to investigate inter- and intra-observer variability.</p> <p>Results</p> <p>Average analysis time of the new tool was 141s, significantly shorter than 261s using TomTec (<it>p </it>< 0.001). Bland Altman analysis revealed high agreement of measured EDV, ESV, and EF compared to TomTec (<it>p </it>= <it>NS</it>), with bias and 95% limits of agreement of 2.1 ± 21 ml, -0.88 ± 17 ml, and 1.6 ± 11% for EDV, ESV, and EF respectively. Intra-observer variability of 4DLVQ vs. TomTec was 7.5 ± 6.2 ml vs. 7.7 ± 7.3 ml for EDV, 5.5 ± 5.6 ml vs. 5.0 ± 5.9 ml for ESV, and 3.0 ± 2.7% vs. 2.1 ± 2.0% for EF (<it>p </it>= <it>NS</it>). The inter-observer variability of 4DLVQ vs. TomTec was 9.0 ± 5.9 ml vs. 17 ± 6.3 ml for EDV (<it>p </it>< 0.05), 5.0 ± 3.6 ml vs. 12 ± 7.7 ml for ESV (<it>p </it>< 0.05), and 2.7 ± 2.8% vs. 3.0 ± 2.1% for EF (<it>p </it>= <it>NS</it>).</p> <p>Conclusion</p> <p>In conclusion, the new analysis tool gives rapid and reproducible measurements of LV volumes and EF, with good agreement compared to another RT3DE volume quantification tool.</p

    The effect of chordae tendineae on systolic flow

    Get PDF
    When using Computational Fluid Dynamics to simulate ventricular blood flow in the heart, it has been common practice to neglect the effect of the sub-valvular apparatus and the trabeculae on the flow conditions. In this study, we analyze the effect of neglecting the chordae tendineae on the fluid flow and pressure drop. To test the assumption we use a previously developed dynamic 3D model of the left ventricle, aorta and valves that is based on 3D echocardiographic recordings. To this model we add the chordae tendineae as a sub-grid model. The previously developed 3D model for the left ventricle during systole is based on real-time three-dimensional echocardiography (RT3DE) recordings of a 30 years old female volunteer. The segmented ventricular wall does not include details of the aorta and the mitral valve, so these were reconstructed. The subgrid model for the flow across the chordae tendineae is based on the Actuator Line Method, which means that they are represented by drag coefficients. The analysis shows that the effect of the chordae tendineae on the pressure drop and work efficiency of the normal heart during systole is minor, and it seems that for simulating ventricular fluid flow and pressure drop during systole, one can follow the current practice and ignore the chordae. However, there can be local effects such as small vortices behind the chordae. Whether such effects are important for a particular application must be evaluated for the given case.publishedVersio

    Automatic measurement of aortic annulus diameter in 3-dimensional transoesophageal echocardiography

    Get PDF
    Background Transcatheter aortic valve implantation involves percutaneously implanting a biomechanical aortic valve to treat severe aortic stenosis. In order to select a proper device, precise sizing of the aortic valve annulus must be completed. Methods In this paper, we describe a fully automatic segmentation method to measure the aortic annulus diameter in patients with aortic calcification, operating on 3-dimensional transesophageal echocardiographic images. The method is based on state estimation of a subdivision surface representation of the left ventricular outflow tract and aortic root. The state estimation is solved by an extended Kalman filter driven by edge detections normal to the subdivision surface. Results The method was validated on echocardiographic recordings of 16 patients. Comparison against two manual measurements showed agreements (mean ±SD) of -0.3±1.6 and -0.2±2.3 mm for perimeter-derived diameters, compared to an interobserver agreement of -0.1±2.1 mm. Conclusions With this study, we demonstrated the feasibility of an efficient and fully automatic measurement of the aortic annulus in patients with aortic disease. The algorithm robustly measured the aortic annulus diameter, providing measurements indistinguishable from those done by cardiologists

    The effect of chordae tendineae on systolic flow

    No full text
    When using Computational Fluid Dynamics to simulate ventricular blood flow in the heart, it has been common practice to neglect the effect of the sub-valvular apparatus and the trabeculae on the flow conditions. In this study, we analyze the effect of neglecting the chordae tendineae on the fluid flow and pressure drop. To test the assumption we use a previously developed dynamic 3D model of the left ventricle, aorta and valves that is based on 3D echocardiographic recordings. To this model we add the chordae tendineae as a sub-grid model. The previously developed 3D model for the left ventricle during systole is based on real-time three-dimensional echocardiography (RT3DE) recordings of a 30 years old female volunteer. The segmented ventricular wall does not include details of the aorta and the mitral valve, so these were reconstructed. The subgrid model for the flow across the chordae tendineae is based on the Actuator Line Method, which means that they are represented by drag coefficients. The analysis shows that the effect of the chordae tendineae on the pressure drop and work efficiency of the normal heart during systole is minor, and it seems that for simulating ventricular fluid flow and pressure drop during systole, one can follow the current practice and ignore the chordae. However, there can be local effects such as small vortices behind the chordae. Whether such effects are important for a particular application must be evaluated for the given case
    corecore