479 research outputs found

    Compressive Space-Time Galerkin Discretizations of Parabolic Partial Differential Equations

    Get PDF
    We study linear parabolic initial-value problems in a space-time variational formulation based on fractional calculus. This formulation uses "time derivatives of order one half" on the bi-infinite time axis. We show that for linear, parabolic initial-boundary value problems on (0,∞)(0,\infty), the corresponding bilinear form admits an inf-sup condition with sparse tensor product trial and test function spaces. We deduce optimality of compressive, space-time Galerkin discretizations, where stability of Galerkin approximations is implied by the well-posedness of the parabolic operator equation. The variational setting adopted here admits more general Riesz bases than previous work; in particular, no stability in negative order Sobolev spaces on the spatial or temporal domains is required of the Riesz bases accommodated by the present formulation. The trial and test spaces are based on Sobolev spaces of equal order 1/21/2 with respect to the temporal variable. Sparse tensor products of multi-level decompositions of the spatial and temporal spaces in Galerkin discretizations lead to large, non-symmetric linear systems of equations. We prove that their condition numbers are uniformly bounded with respect to the discretization level. In terms of the total number of degrees of freedom, the convergence orders equal, up to logarithmic terms, those of best NN-term approximations of solutions of the corresponding elliptic problems.Comment: 26 page

    Weak convergence for a spatial approximation of the nonlinear stochastic heat equation

    Full text link
    We find the weak rate of convergence of the spatially semidiscrete finite element approximation of the nonlinear stochastic heat equation. Both multiplicative and additive noise is considered under different assumptions. This extends an earlier result of Debussche in which time discretization is considered for the stochastic heat equation perturbed by white noise. It is known that this equation has a solution only in one space dimension. In order to obtain results for higher dimensions, colored noise is considered here, besides white noise in one dimension. Integration by parts in the Malliavin sense is used in the proof. The rate of weak convergence is, as expected, essentially twice the rate of strong convergence.Comment: 19 page

    Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity

    Full text link
    An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimates. The theory is illustrated by a numerical example.Comment: 16 pages, 2 figure

    Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters

    Get PDF
    We provide an analytical solution of the heat equation in the half-space subject to a moving Gaussian heat flux with piecewise constant parameters. The solution is of interest in powder bed fusion applications where these parameters can be used to control the conduction of heat due to a scanning beam of concentrated energy. The analytical solution is written in a dimensionless form as a sum of integrals over (dimensionless) time. For the numerical computation of these integrals we suggest a quadrature scheme that utilizes pre-calculated look-up tables for the required quadrature orders. Such a scheme is efficient because the required quadrature orders are strongly dependent on the parameters in the heat flux. The possibilities of using the obtained computational technique for the control and optimization of powder bed fusion processes are discussed

    Optimal closing of a pair trade with a model containing jumps

    Get PDF
    A pair trade is a portfolio consisting of a long position in one asset and a short position in another, and it is a widely applied investment strategy in the financial industry. Recently, Ekstr\"om, Lindberg and Tysk studied the problem of optimally closing a pair trading strategy when the difference of the two assets is modelled by an Ornstein-Uhlenbeck process. In this paper we study the same problem, but the model is generalized to also include jumps. More precisely we assume that the above difference is an Ornstein-Uhlenbeck type process, driven by a L\'evy process of finite activity. We prove a verification theorem and analyze a numerical method for the associated free boundary problem. We prove rigorous error estimates, which are used to draw some conclusions from numerical simulations.Comment: 17 pages, 4 figures

    Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation

    Full text link
    We consider the stochastic Cahn-Hilliard equation driven by additive Gaussian noise in a convex domain with polygonal boundary in dimension d≤3d\le 3. We discretize the equation using a standard finite element method in space and a fully implicit backward Euler method in time. By proving optimal error estimates on subsets of the probability space with arbitrarily large probability and uniform-in-time moment bounds we show that the numerical solution converges strongly to the solution as the discretization parameters tend to zero.Comment: 25 page

    On a randomized backward Euler method for nonlinear evolution equations with time-irregular coefficients

    Full text link
    In this paper we introduce a randomized version of the backward Euler method, that is applicable to stiff ordinary differential equations and nonlinear evolution equations with time-irregular coefficients. In the finite-dimensional case, we consider Carath\'eodory type functions satisfying a one-sided Lipschitz condition. After investigating the well-posedness and the stability properties of the randomized scheme, we prove the convergence to the exact solution with a rate of 0.50.5 in the root-mean-square norm assuming only that the coefficient function is square integrable with respect to the temporal parameter. These results are then extended to the numerical solution of infinite-dimensional evolution equations under monotonicity and Lipschitz conditions. Here we consider a combination of the randomized backward Euler scheme with a Galerkin finite element method. We obtain error estimates that correspond to the regularity of the exact solution. The practicability of the randomized scheme is also illustrated through several numerical experiments.Comment: 37 pages, 3 figure

    Full discretisation of semi-linear stochastic wave equations driven by multiplicative noise

    Get PDF
    A fully discrete approximation of the semi-linear stochastic wave equation driven by multiplicative noise is presented. A standard linear finite element approximation is used in space and a stochastic trigonometric method for the temporal approximation. This explicit time integrator allows for mean-square error bounds independent of the space discretisation and thus do not suffer from a step size restriction as in the often used St\"ormer-Verlet-leap-frog scheme. Furthermore, it satisfies an almost trace formula (i.e., a linear drift of the expected value of the energy of the problem). Numerical experiments are presented and confirm the theoretical results
    • …
    corecore