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Abstract

We provide an analytical solution of the heat equation in the half-space subject
to a moving Gaussian heat flux with piecewise constant parameters. The so-
lution is of interest in powder bed fusion applications where these parameters
can be used to control the conduction of heat due to a scanning beam of con-
centrated energy. The analytical solution is written in a dimensionless form as
a sum of integrals over (dimensionless) time. For the numerical computation of
these integrals we suggest a quadrature scheme that utilizes pre-calculated look-
up tables for the required quadrature orders. Such a scheme is efficient because
the required quadrature orders are strongly dependent on the parameters in the
heat flux. The possibilities of using the obtained computational technique for
the control and optimization of powder bed fusion processes are discussed.

Keywords: analytical solution, three-dimensional, moving heat flux, powder
bed fusion, electron beam melting

1. Introduction

Powder bed fusion (PBF) is a particular type of additive manufacturing
(AM) where metal powder is melted by a laser or electron beam in a layer-
wise fashion to enable the production of geometrically complex parts. AM is
a technology that undergoes continuous development towards an industry that
is stable and efficient, but there are still issues in terms of processability and
quality [1, 2]. Mathematical models of different levels of complexity are used to
gain understanding of the process and to facilitate optimization of the melting.
As such, these models provide valuable information and they can complement
or replace many types of trial-and-error investigations.

PBF is a multi-scale process, but macroscopic models are still able to ac-
curately describe the thermal and mechanical behavior of the melting process
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[3][4][5]. The essence of these models is that the powder bed is treated as a
continuum [1] rather than a collection of powder particles. This allows for sim-
ulation on large length scales. In the area of continuum modeling of PBF, most
contributions are based on the finite element method since it allows for straight-
forward implementation of different physical phenomena such as cooling, phase
transitions, temperature dependencies, among other [6].

In contrast to finite element methods, analytical solutions of the heat equa-
tion are beneficial if the computational effort required to compute them is low.
A low computational effort is particularly useful for control and optimization of
the melting process, as they rely heavily on an efficient solver. The drawback of
analytical solutions is the restrictive assumptions that are required. However,
even if detailed physics of the melting process is left out, such solutions can still
be used for the purpose of process optimization and verification.

The analytical temperature distribution due to a moving heat source has
been derived for a vast variety of problems in both semi-infinite [7, 8, 9, 10] and
finite [7, 11, 12, 13] three-dimensional domains, and with different heat source
models. In this paper the problem under consideration is the heat equation in
the lower half-space with a Gaussian distributed heat flux that travels over the
surface. In [14] a solution of this problem is obtained via superposition of a series
of point heat source solutions in the case of a continuously scanning heat source
moving along a single line. These solutions are then expressed in a dimensionless
form. It has been shown [9] that this solution is a special case of a more general
solution and is a valid approximation in the case of strongly absorbing materials
where the beam energy is absorbed near the surface. This approximation suits
both laser and electron beam applications as long as penetration depths are
small.

A later contribution in [15] presents a solution of the heat equation on the
half-space for a general heat flux. The solution is obtained via a reformulation
of the problem and the use of Duhamel’s principle. This result is then applied
to the traveling Gaussian heat flux problem for a single line with constant beam
parameters. The obtained solution coincides with the one presented in [16] and
is expressed in a dimensionless form.

In the present study, we extend this solution to the more general case when
the beam path is piecewise straight and beam parameters are piecewise constant
in time. In actual PBF processes, the beam parameters can be used to control
the temperature during melting and they are often defined in this piecewise
constant fashion due to discretization. Therefore, the solution presented here
is of particular interest for such applications [17]. The solution consists of a
sum of integrals over (dimensionless) time. The quadrature orders required to
accurately approximate these integrals vary significantly depending on time,
beam spot size, and speed. Therefore, the generation of look-up tables that
store the required quadrature orders is suggested as a method of speeding up
computations.

The remainder of this paper is organized as follows. In Section 2, we for-
mulate the problem under consideration and derive an analytical solution that
is put in dimensionless form. Section 3 deals with the numerical computation
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of said solution. Section 4 presents three examples that illustrate the validity
of our solution and make use of the quadrature scheme presented in the section
prior. Finally, Section 5 discusses our solution in the context of optimization of
the melting process.

2. Formulation of the problem and its solution

Consider the heat equation on the lower half space Ω = R2 × R− during a
time span T = (0, T ]. Let Γ denote the surface boundary z = 0 that is subject
to a heat flux Φ. Let uinit denote an initial temperature. With ẑ the outward
unit normal of Ω, the problem can be written as

ρcp
∂u

∂t
−∇ · (λ∇u) = 0 in Ω× T ,

(λ∇u) · ẑ = Φ on Γ× T ,
u(·, 0) = uinit in Ω,

(1)

where ρ, cp, λ denote density, heat capacity, and thermal conductivity, respec-
tively. These material parameters are assumed to be constant. This gives us
a thermal diffusivity κ = λ/ρcp. With x = (x, y, z), the solution of (1) is a
temperature distribution u = u(x, t).

From [15], the solution of (1) for a general initial temperature and a general
heat flux is given by

u(x, t) = uI(x, t) + uΦ(x, t), (2)

where

uI(x, t) = (G(·, t) ∗ uinit) (x), (3)

uΦ(x, t) = 2

∫ t

0

∫
R2

G(x− ξ, y − η, z, t− s)Φ(ξ, η, s) dξdη ds.

Here

G(x, t) =
(

1
4πκt

)3/2

exp
(
− |x|

2

4κt

)
is the Green’s function for three-dimensional diffusion. All convolutions in this
paper operate on R3,

(f ∗ g)(x) =

∫
R3

f(ξ)g(x− ξ) dξ,

with ξ = (ξ, η, ζ).
PBF involves a concentrated application of heat via a beam. The beam

travels on the surface Γ along a path C. The energy from the beam heats the bed
due to absorption. The amount of absorbed beam energy depends on several
factors such as beam equipment (laser or electron beam), melting conditions
(conductive or key hole melting), and material. Here we assume that keyhole
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effects and penetration depths of the beam are shallow and use a flux to model
the contribution of heat. The flux Φ is modeled by a Gaussian function,

Φ = Φ(x, y, t) =
P (t)

2πσ(t)2
exp
(
− (x−xc(t))2+(y−yc(t))2

2σ(t)2

)
,

where xc = (xc, yc, 0) ∈ C is the position of the center of the beam. The three
beam parameters are the absorbed beam power P (t), the effective beam spot
size σ(t), and the beam speed v(t) = |v(t)|. The absorbed beam power and
the effective beam spot size are regarded as parameters that can be adjusted
to mimic a more realistic absorption (see [4] for a discussion about electron
beam heat sources, effective beam diameters and beam efficiency). We have
v = (vx, vy, 0) = (v cosα, v sinα, 0), where α is the angle between the x-axis
and the direction of the path. This angle is known for any t since the beam
path C is pre-set and thus a rotation of axis shows that v uniquely defines the
vector (vx, vy, 0). The position of the beam xc at a given time depends on the
speed with which the beam has traveled the path C up to this time. By using
this flux, we make the assumption that surface radiative and evaporative effects
are negligible compared to the heat conduction.

We henceforth also assume that the initial temperature uinit is constant.
This assumption simplifies the exposition as it implies that (G(·, t) ∗ uinit) (x) =
uinit. However, it should be noted that a constant initial temperature is not a
requirement for the proposed method. A bulk time dependent temperature
distribution that for instance mimics the temperature history from previous
melted layers can easily be included by summation.

In the case of constant beam parameters and single line melting, uI(x, t) =
uinit and xc(t) = (vxt, vyt, 0). Then an explicit evaluation of the spatial integral
in the second term of (2) gives [15]

u(x, t) = uI(x, t) + uΦ(x, t)

= uinit +

∫ t

0

P exp
(
− (x−vxs)2+(y−vys)2

2σ2+4κ(t−s) − z2

4κ(t−s)

)
(π3κ)1/2ρcp(t− s)1/2 (σ2 + 2κ(t− s))

ds.
(4)

PBF is a dynamic process and to assume constant beam parameters is not a
feasible approach since these parameters can, and should, be used to control the
melting process. Therefore, we now extend the above solution to the case when
beam parameters are piecewise constant and the beam path is not restricted to
a single line. Parameter data are often restricted to vary in this discontinuous
fashion during melting. The following definition makes the concept of piecewise
constant beam parameters more precise.

Definition 1. Given times 0 = t0 < t1 < . . . < tN = T , we define a partition
of T consisting of N segments

(tn−1, tn] =
(
tin, t

f
n

]
, n = 1, 2, . . . , N.

Index n indicates the nth segment in the partition, and a segment in turn is a
collection of the following data:
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– tin, t
f
n; an initial time and final time, respectively,

– (Pn, σn, vn); a constant triplet of beam power, spot size, and speed such
that

(P (t), σ(t), v(t)) = (Pn, σn, vn) if t ∈
(
tin, t

f
n

]
,

– `n; a line traversed by the beam between times tin and tfn,

– xi
n, xf

n; the initial position and final position of `n, respectively,

– uI
n, uΦ

n , un; restrictions of uI, uΦ, and u onto segment n, respectively,
meaning that 

u(·, t) = un(·, t)
uI(·, t) = uI

n(·, t)
uΦ(·, t) = uΦ

n (·, t)
if t ∈

(
tin, t

f
n

]
.

Note that tfn = tin+1.
We now utilize the constant parameters solution (4) in order to express a

solution of (1) for the practically relevant case when the beam parameters are
piecewise constant in the sense of Definition 1. This is done in two steps where
we deal with uI and uΦ separately. Given t ∈

(
tin, t

f
n

]
, the flux term uΦ is

obtained by translating in space and time. More precisely, with the integrand

h(x, t, s;P, σ, v) =
P exp

(
− (x−vxs)2+(y−vys)2

2σ2+4κ(t−s) − z2

4κ(t−s)

)
(π3κ)1/2ρcp(t− s)1/2 (σ2 + 2κ(t− s))

and (4), the flux term uΦ
n on segment n starting in xi

n at time tin can be expressed
as

uΦ
n (x, t) =

∫ t−tin

0

h(x− xi
n, y − yi

n, z, t− tin, s;Pn, σn, vn) ds. (5)

Known substitutions [15] put us in a frame that moves with the beam and let
us compute the right-hand side of (5) as

uΦ
n (x̄n, t̄n) = Tn

∫ t̄n

0

1
1+s̄2 exp

(
− (x̄n+v̄n,xs̄

2)2+(ȳn+v̄n,y s̄
2)2

1+s̄2 − z̄
2
n

s̄2

)
ds̄,

(6)
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where

Tn = Pn/
√

2π3/2λσn, [K]

v̄n,x = vn,xσn/2
√

2κ,

v̄n,y = vn,yσn/2
√

2κ,

s̄ =
√

2κ(t− tin − s)/σn,

x̄n =
(
x− xi

n − vn,x(t− tin)
)
/
√

2σn,

ȳn =
(
y − yi

n − vn,y(t− tin)
)
/
√

2σn,

z̄n = z/
√

2σn,

t̄n =
√

2κ(t− tin)/σn.

An overline indicates that a variable is dimensionless. This dimensionless form
of the integral is easier to compute numerically.

The initial value term uI
n collects the heat contribution due to uinit as well

as the traversing of the beam over all previous segments (with index less than
n). As a consequence, it is given by the following sum of convolutions,

uI
n(x, t) = uinit +

n−1∑
k=1

(
G(·, t− tfk) ∗ uΦ

k (·, tfk)
)
(x). (7)

We refer to Appendix Appendix A for a proof of this result. In order to express
uI
n without spatial integrals we need to compute convolutions on the form

uI
n,k(x, t) =

(
G(·, t− tfk) ∗ uΦ

k (·, tfk)
)
(x) , 1 ≤ k ≤ n− 1.

To this end, begin by changing the order of integration,

uI
n,k(x, t) =

∫
R3

(
1

4πκ(t−tfk)

)3/2

exp
(
− |x−ξ|

2

4κ(t−tfk)

)
·

(∫ tfk−t
i
k

0

h(ξ − xi
k, η − yi

k, ζ, t
f
k − tik, r;Pk, σk, vk) dr

)
dξ

=

∫ tfk−t
i
k

0

∫
R3

h(ξ−xi
k,η−y

i
k,ζ,t

f
k−t

i
k,r;Pk,σk,vk)

(4πκ(t−tfk))
3/2 exp

(
− |x−ξ|

2

4κ(t−tfk)

)
dξ dr.

A change of variables gives

uI
n,k(x̄k, t̄k) =

Tk
π3/2 t̄3k

∫ t̄fk

0

1

1 + r̄2
Jξ̄(x̄k, t̄k, r̄) Jη̄(ȳk, t̄k, r̄) Jζ̄(z̄k, t̄k, r̄) dr̄,

where Jξ̄, Jη̄, and Jζ̄ are integrals over space that can be evaluated as

Jξ̄(x̄k, t̄k, r̄) =

∫ ∞
−∞

exp
(
− (x̄k−σ̄k ξ̄)

2

t̄2k
− (ξ̄+v̄k,xr̄

2
k)2

1+r̄2k

)
dξ̄

=

√
π t̄2k(1 + r̄2)

1 + r̄2 + t̄2k
exp

(
− (x̄k+v̄k,xr̄

2)2

1+r̄2+t̄2k
)
)
,
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Jη̄(ȳk, t̄k, r̄) =

∫ ∞
−∞

exp
(
− (ȳk−σ̄kη̄)2

t̄2k
− (η̄+v̄k,y r̄

2
k)2

1+r̄2k

)
dη̄

=

√
π t̄2k(1 + r̄2)

1 + r̄2 + t̄2k
exp

(
− (ȳk+v̄k,y r̄

2)2

1+r̄2+t̄2k

)
,

Jζ̄(z̄k, t̄k, r̄) =

∫ ∞
−∞

exp
(
− (z̄k−σ̄k ζ̄)

2

t̄2k
− ζ̄

2

r̄2k

)
dζ̄

=

√
π t̄2k r̄

2

r̄2 + t̄2k
exp

(
− z̄2k
r̄2+t̄2k

)
,

where

ξ̄ = (ξ − xf
k)/
√

2σk,

η̄ = (η − yf
k)/
√

2σk,

ζ̄ = ζ/
√

2σk,

and the remaining substitutions are

Tk = Pk/
√

2π3/2λσk, [K]

v̄k,x = vk,xσk/2
√

2κ,

v̄k,y = vk,yσk/2
√

2κ,

t̄fk =
√

2κ(tfk − tik)/σk,

r̄ =
√

2κ(tfk − tik − r)/σk,

x̄k = (x− xf
k)/
√

2σk,

ȳk = (y − yf
k)/
√

2σk,

z̄k = z/
√

2σk,

t̄k =
√

2κ(t− tfk)/σk.

Note that x̄k, ȳk, and t̄k above are slightly different from corresponding variables
x̄n, ȳn, and t̄n in the flux term (6). For brevity we use an index to indicate not
only the segment but also if a variable is related to the flux term (index n) or
the initial value term (index k < n). After some simplifications we arrive at

uI
n,k(x̄k, t̄k) = Tk

∫ t̄fk

0

r̄ (r̄2+t̄2k)−1/2

(1+r̄2+t̄2k)
exp

(
− (x̄k+v̄k,xr̄

2)2+(ȳk+v̄k,y r̄
2)2

1+r̄2+t̄2k
− z̄2k
r̄2+t̄2k

)
dr̄,

(8)
The above is collected into the following proposition.
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Proposition 1. Given a time partition as in Definition 1, the solution of (1)
for piecewise constant beam parameters and piecewise linear beam path,{

(P (t), σ(t), v(t)) = (Pn, σn, vn)

C = `n
for t ∈

(
tin, t

f
n

]
, n = 1, 2, . . . , N,

can be written as

u(x, t) = uI
n(x, t) + uΦ

n (x, t)

= uinit +

n−1∑
k=1

uI
n,k(x, t) + uΦ

n (x, t) for t ∈
(
tin, t

f
n

]
, n = 1, 2, . . . , N,

(9)

where uI
n,k and uΦ

n are given via (8) and (6), respectively.

Consequently, if t lies in segment n, then the temperature distribution at time
t contains n integrals over (dimensionless) time.

3. Description of a Gauss–Legendre quadrature generation scheme

This section is concerned with the computation of the solution (9). The solution
contains a sum of integrals that need to be solved numerically. This is done using
Gauss–Legendre quadrature, and particular attention is paid to the fact that the
required quadrature orders may vary significantly for these integrals depending
on time and beam parameters.

Gauss–Legendre quadrature requires [−1, 1] to be the domain of integration.
For an arbitrary function f we have∫ t

0

f(s) ds =

∫ 1

−1

t
2f
(
t
2 (s̃+ 1)

)
ds̃.

Such an integral can then be approximated as∫ 1

−1

t
2f
(
t
2 (s̃+ 1)

)
ds̃ ≈ t

2

M∑
j=1

wjf
(
t
2 (s̃j + 1)

)
,

where s̃j are the roots of the M th Legendre polynomial pM (s̃) and the corre-
sponding weights are given by

wj =
2

(1− s̃2
j )
(
p
′
M (s̃j)

)2 .
The roots and weights can be computed easily [18].
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We write down the numerical approximation of (9) to be used in imple-
mentation. For notational convenience, introduce symbols for the integrands in
(9),

fn(x̄n, s̄) =
1

1 + s̄2
exp

(
− (x̄n+v̄n,xs̄

2)2+(ȳn+v̄n,y s̄
2)2

1+s̄2 − z̄
2
n

s̄2

)
,

n = 1, 2, . . . , N,

gn,k(x̄k, t̄k, r̄) =
r̄ (r̄2 + t̄2k)−1/2

(1 + r̄2 + t̄2k)
exp

(
− (x̄k+v̄xr̄

2)2+(ȳk+v̄y r̄
2)2

1+r̄2+t̄2k
− z̄2k
r̄2+t̄2k

)
,

k = 1, 2, . . . , n− 1.

The approximation of the solution (9) obtained using Gauss–Legendre quadra-
ture becomes

U = U I
n + UΦ

n

= uinit +

n−1∑
k=1

TkĀ
I
n,k + TnĀ

Φ
n for t ∈

(
tin, t

f
n

]
, n = 1, 2, . . . , N, (10)

where

ĀI
n,k(·, t̄k, v̄k, t̄fk) =

t̄fk
2

Mn,k∑
j=1

wn,k,j gn,k
(
·, t̄k, t̄

f
k

2 (r̃j + 1)
)
,

ĀΦ
n (·, t̄n, v̄n) =

t̄n
2

Mn∑
j=1

wn,j fn
(
·, t̄n2 (s̃j + 1)

)
.

The spatial variables have been suppressed to highlight that in implementation
the computation of these sums is vectorized in space.

Note that the order of each quadrature in (10) may vary. On one hand,
it is important to choose quadratures of high enough order as failing to do so
introduces inaccurate ripple effects in the solution. On the other hand, as the
aim is to obtain approximations that all are sufficiently accurate with respect
to some tolerance, ∣∣∣∣∣

∫ 1

−1

f(s) ds−
M∑
j=1

wjf(sj)

∣∣∣∣∣ < TOL, (11)

the required orders of the quadratures in (10) will vary since the beam param-
eters vary and, consequently, affect the shapes of the integrands as well as the
domains of integration in (9). Hence, it might be undesirable to use one global
quadrature order M that satisfies (11) for all integrals in (9) since some of those
integrals would be approximated to an unnecessarily high degree. More pre-
cisely, the quadrature order Mn required to approximate the integral in (6) in
the sense of (11) depends on t̄n and v̄n. Similarly, the quadrature order Mn,k

required to approximate the integral in (8) in the sense of (11) depends on t̄k,
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t̄fk, and v̄k. Based on these observations, we introduce an offline step that gen-
erates two quadrature look-up tables, one for U I

n and one for UΦ
n , that store the

required quadrature orders. The purpose of these look-up tables is to lower the
computational effort by making sure that we only use quadratures of sufficient
order. Once such tables have been generated, they can be used for any type
of problem in the online stage, assuming that the table sufficiently covers the
parameter space.

A simple generation of a look-up table for UΦ
n is outlined in Algorithm 1. It

uses a grid over the space {t̄n}×{v̄n} of possible parameter values. An approx-
imation AΦ

n (·, t̄n, v̄n) of the integral in 6 is then computed at all grid points for
increasing quadrature orders. For each grid point, once the approximation is
sufficient in the sense of (11) for all possible x̄n, the quadrature order is stored
in an associative array, such as Python’s dictionary type, using the grid point in
the parameter space as a key. This table can then be used to obtain the required
quadrature order for any future approximation ĀΦ

n (·, ā, b̄) by rounding off (ā, b̄)
to the nearest grid point and use the table. The generation of a look-up table
for the terms in U I

n is similar, the only difference being that we instead loop
over a grid that covers the parameter space {t̄fk} × {t̄k} × {v̄k}.

There are additional ways to improve the efficiency of the solver. Since the
number of integrals in u increases linearly with n, the solution becomes more and
more expensive as n increases. However, the integrands in (8) attenuate over
time as the heat diffuses, and as a result the difference between contributions
from segments k � n is small. Consequently, these segments can be combined
into longer segments that are then ascribed effective beam parameters, and
effective contributions can then be computed on these longer segments. This is
an adaptive procedure that reduces and bounds the total number of segments
and thus makes sure that the number of integrals in the solution (9) do not
become too big. Alternatively, if the contribution from a segment k � n is small,
the corresponding intergal could be replaced entirely by an effective constant
temperature. We do not formalize these procedures here.
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Data:
t̄, (grid points over set of possible t̄n)
v̄, (grid points over set of possible v̄n)
(̃s,w), (set of quadratures of increasing order)
(s̃ref , wref), (high order reference quadrature)
TOL. (accuracy tolerance)

Result:
quadDict. (array storing quadratures for computing ĀΦ

n )

begin
for t̄ ∈ t̄ do

for v̄ ∈ v̄ do
Compute ĀΦ

n (·, t̄, v̄, s̃ref , wref) (reference integral)
for (s̃, w) ∈ (̃s,w) do

Compute ĀΦ
n (·, t̄, v̄, s̃, w) (approximated integral)

E = abs
(
ĀΦ
n (·, t̄; v̄, s̃ref , wref)− ĀΦ

n (·, t̄, v̄, s̃, w)
)

(error
vector)

if max(E) < TOL then
quadDict(t̄, v̄) = (s̃, w) (store quadrature if approxim-
break ation is sufficiently accurate)

end

end

end

end

end
Algorithm 1: Basic algorithm for generating a quadrature look-up table for the

flux term. Since we can not compute the integral in a condition of type (11) exactly,

an approximation ĀΦ
n (·, t̄; v̄, s̃, w) is instead compared to an accurate approximation

based on a quadrature of very high order. The space variable has been suppressed in

the algorithm to highlight that in implementation the computation of temperature

is vectorized in space, and therefore we do not let the required quadrature order be

space dependent. The corresponding generation for the integrals in the initial value

term is similar.

4. Numerical examples

We use a Python implementation to look at three short examples. The first
example highlights Proposition 1. The second example solves a larger prob-
lem and utilizes the look-up tables described in Section 3. Finally, the third
example illustrates the importance of beam parameter optimization. Through-
out this section, the initial temperature and material parameters are set to
uinit = 1000 K, λ = 20 W/mK, and κ = 8.4495 · 10−6 m2/s.

Example 1

We confirm that our solution (9) is correct by solving (1) when the beam path
is a single line with constant beam parameters. Let C = {(x, 0, 0) : 0 ≤ x ≤
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10 mm}. Furthermore, let P = 100 W, σ = 0.1 mm and v = (1000, 0) mm/s.
The solution of this problem can be expressed differently depending on the
partitioning of T . If no partitioning is carried out, then the solution (9) reduces
to u = uinit + uΦ. As stated in Section 2, the solution for this case is known
from literature [15] and will act as our reference solution. The reference solution
is compared with another solution based on a uniform partition of T into four
segments such that

xi
n = 0.25(n− 1), tin = 0.25(n− 1)/v, (Pn, σn, vn) = (P, σ, v), n = 1, 2, 3, 4.

For the sake of simpler display of results, we restrict ourselves to computing the
solution on C only. A very high quadrature order of 800 is used for all integrals.
We use step sizes 0.05 mm and 0.05 ms in space and time, respectively. Hence,
C×T is discretized into a grid of size 200×200. Denote the discretized reference
solution by uref and the discretized solution based on the partition by u. The
solutions align, as

sup
C×T

(|uref − u|) = 4.4801 · 10−11 K. (12)

Recall from (8) the temperature contribution uI
n,k during segment n from seg-

ment k < n. These contributions are shown to the left in Figure 4 for different
times. If t lies in segment n, then uI

n − uinit consists of n − 1 terms, i.e., it
contains one contribution from each segment completely traversed by the beam.

The total solution is shown to the right in Figure 4 for different times.
We see that the initial value term and flux term are added to form the total
temperature distribution with its characteristic tail. As expected, the initial
value term dominates over the flux term on the part of the beam path that does
not belong to the current segment. And as shown by (12), the solution u aligns
with uref .
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Figure 1. The solution and its components at three different times. For a time in
segment n, the solution is given by u(·, t) = uI

n(·, t) + uΦ
n (·, t). The initial value term

is in turn given by uI
n(·, t) = uinit +

∑n−1
k=1 uI

n,k(·, t).

Example 2

We utilize the quadrature generation scheme described in Algorithm 1 to
compute the solution of (1) in the subdomain ω = [0, 20] × [0, 4] × {0}mm2

when the beam path consists of 10 horizontal lines of length 10 mm. Each line
is partitioned into 5 segments, each of length 2 mm, resulting in a total of N = 50
segments. On each of these 10 horizontal lines, the spot size σ(t) is increased
from left to right, from 0.1 mm to 0.3 mm in steps of 0.05 mm, and the speed
v(t) is increased from left to right, from 1 m/s to 3 m/s in steps of 0.5 m/s. The
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effect P (t) = 100 W throughout. The beam is set to traverse these 10 lines in
a snake-like fashion according to Figure 2. The domain ω is discretized into a
square grid with a total of 401 × 81 × 1 = 32481 nodes. The number of time
steps is 2000 (40 steps per segment). The computation of u(·, t) is parallelized
over t and the solver is executed on a laptop with an Intel Core i7-6500U CPU
(4 threads) and 8 GB RAM (2133 MHz DDR4). The execution time is 683 s.
Figure 3 shows the maximum temperature. The temperature on the left-hand
side is high since the beam spot size and speed are low there. Meanwhile, the
temperature on the right-hand side is low since the beam spot size and speed
are high.

The quadrature orders required to approximate the integrals in this example
vary according to Figure 4. The approximation of all integrals are based on the
tolerance TOL = 10−8 (see Algorithm 1). For the integrals in the heat flux term,
the required order increases with v̄n and t̄n. We also see that as t̄k increases,
the required orders for the integrals in the initial value term decreases. As
mentioned in Section 3, this decrease is due to heat diffusion and is important
to utilize in big problems where the number of segments is large. For such
problems, as the number of integrals in uI grow, the computational cost can
become detrimental unless the quadrature orders are adjusted appropriately.

0 2 4 6 8 10 12 14 16 18 20
x (mm)

0

1

2

3

4

y
(m

m
)

i ii iii iv v

σ (mm) v (m/s)

i 0.1 1

ii 0.15 1.5

iii 0.2 2

iv 0.25 2.5

v 0.3 3

Figure 2. Beam path in Example 2. It starts in the lower left corner and works its way
up. The spot size and speed vary between the five sections according to the table. The
effect P = 100 W.
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Figure 3. The temperature reaches its maximum values near the turning points on
the left-hand side where the beam parameters are smallest. The temperature is highly
dependent on the beam parameters.
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Figure 4. The quadrature order required to compute uΦ
n depends on t̄n and v̄n. The

quadrature orders required to compute the integrals uI
n,k, k < n, depend on t̄fk, t̄k, and

v̄k. The required quadrature orders increase with v̄. Furthermore, Mn increases and
Mn,k decreases as their corresponding (dimensionless) time variables increase.

Example 3

One of the benefits of AM is the possibility to produce parts with complex
geometries. Meanwhile, it is important to control the temperature during the
melting process. The following example illustrates the difficulty of this demand
as well as the importance of beam parameter optimization.

The beam path is shown in Figure 5. The solution is evaluated on the
same grid as in Example 2. We use constant beam parameters P = 100 W,
σ = 0.1 mm, and v = 1000 mm/s. The resulting maximum temperature on ω
is shown in Figure 6. The maximum temperature on the longer lines are about
2800 K while it exceeds 3200 K near the center. Now, suppose the allowed max-
imum surface temperature for the process is 2800 K. In such case, the melting
displayed in Figure 6 might result in too much evaporation and subsequent re-
coil pressure, which can result in undesired material transport such as ejection
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of molten materials that later cause defects [19] or formation of small ridges that
prohibit the deposition of new powder layers and thus cause the manufacturing
process to terminate [20].

We understand from Example 4 that the high temperature in the center
of the hourglass shaped melted layer can be decreased by increasing the beam
spot size or speed. This amounts to an optimization procedure that is discussed
further in the next, concluding section.

0 2 4 6 8 10 12 14 16 18 20
x (mm)

0

1

2

3

4

y
(m

m
)

Figure 5. Beam path in Example 3. It starts in the lower left corner and works its way
up.

Figure 6. The ratio between heat generation and heat diffusion becomes larger as
the geometry of the melted area becomes smaller and more compact. Therefore, the
maximum temperature increases significantly as we approach the center of the area.

5. Conclusions and future work

We have presented an analytical solution of the moving Gaussian heat flux
problem for piecewise constant beam parameters. The intended use of the pre-
sented solution is for optimization and control of PBF processes such as electron
beam melting (EBM). In EBM a large number of parameters are used to con-
trol the process. This makes it difficult to optimize the process and limits both
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the number of applications and the number of manufactured materials. Semi-
empirical and highly efficient models that consolidate process parameters into
physical expressions will provide keys to overcome the technical barriers of op-
timization and increase the acceptance of the technology. While our solution is
efficient due to its simple form, the corresponding model does not include all the
material and powder properties explicitly and can only provide an estimate of
the melt pool characteristics. However, it is anticipated that effective parame-
ters can be used to make the model reliable enough for control and optimization.

Due to the aforementioned demand on high efficiency, we have paid partic-
ular attention to the numerical computation of the solution. Additionally, it
should be noted that switching from Python to a compiled programming lan-
guage such as C++ will increase the speed considerably. Adding the possibility
of using highly parallel computer resources will also have a great impact on
the speed of calculation. In subsequent work the intention is to do such imple-
mentations and run the calculations on high end computers. The results will be
compared to both experimental melting in EBM machines and with high fidelity
models and simulations.
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Appendix A. Derivation of initial value term

We show (7). In order to do this, we use that the convolution of two uni-
variate Gaussian functions with zero means and standard deviations α1 and α2

is a Gaussian function with mean 0 and standard deviation
√
α2

1 + α2
2 [21]. The

Green’s function

G(x, t) =
(

1
4πκt

)3/2

exp
(
− |x|

2

4κt

)
=
(

1
4πκt

)1/2

exp
(
− x2

4κt

)
·
(

1
4πκt

)1/2

exp
(
− y2

4κt

)
·
(

1
4πκt

)1/2

exp
(
− z2

4κt

)
is a product of three univariate Gaussian functions, all with mean 0 and standard
deviation

√
2κt. Therefore, we have

G(·, t− tq) ∗G(·, tq − tp) = G(·, t− tp), t > tq > tp. (A.1)

Proposition 2. Given a partition as in Definition 1, the initial value term
uI
n(x, t) = uI(x, t)

∣∣
t∈(tin,t

f
n]

, n = 1, 2, . . . , N , is given by

uI
n(x, t) = uinit +

n−1∑
k=1

(
G(·, t− tfk) ∗ uΦ

k (·, tfk)
)

(x). (7)

Proof. In the case n = 1, (7) reduces to ui
1(x, t) = uinit, which is true since

the initial value term on segment 1 is equal to the initial value term in the single
line solution (4). Now, note that in the frame of reference of segment n + 1,
the initial temperature is the solution at the final time in segment n. Assuming
that (7) is true and recalling that tin+1 = tfn, we find

ui
n+1(·, t) (3)

= G(·, t− tin+1) ∗ u(·, tin+1)

= G(·, t− tfn) ∗ u(·, tfn)

(2)
= G(·, t− tfn) ∗ uI

n(·, tfn) +G(·, t− tfn) ∗ uΦ
n (·, tfn)

(7)
= G(·, t− tfn) ∗

(
uinit +

n−1∑
k=1

G(·, tfn − tfk) ∗ uΦ
k (·, tfk)

)
+G(·, t− tfn) ∗ uΦ

n (·, tfn)

(A.1)
= uinit +

n−1∑
k=1

G(·, t− tfk) ∗ uΦ
k (·, tfk) +G(·, t− tfn) ∗ uΦ

n (·, tfn)

= uinit +

n∑
k=1

G(·, t− tfk) ∗ uΦ
k (·, tfk).

Hence (7) holds for n = 1, 2, . . . , N by induction.
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