We study linear parabolic initial-value problems in a space-time variational
formulation based on fractional calculus. This formulation uses "time
derivatives of order one half" on the bi-infinite time axis. We show that for
linear, parabolic initial-boundary value problems on (0,∞), the
corresponding bilinear form admits an inf-sup condition with sparse tensor
product trial and test function spaces. We deduce optimality of compressive,
space-time Galerkin discretizations, where stability of Galerkin approximations
is implied by the well-posedness of the parabolic operator equation. The
variational setting adopted here admits more general Riesz bases than previous
work; in particular, no stability in negative order Sobolev spaces on the
spatial or temporal domains is required of the Riesz bases accommodated by the
present formulation. The trial and test spaces are based on Sobolev spaces of
equal order 1/2 with respect to the temporal variable. Sparse tensor products
of multi-level decompositions of the spatial and temporal spaces in Galerkin
discretizations lead to large, non-symmetric linear systems of equations. We
prove that their condition numbers are uniformly bounded with respect to the
discretization level. In terms of the total number of degrees of freedom, the
convergence orders equal, up to logarithmic terms, those of best N-term
approximations of solutions of the corresponding elliptic problems.Comment: 26 page