374 research outputs found

    AMERICA. 1:27750000

    Get PDF
    Coordenadas referidas al meridiano de Hierro (O 190 12'-E 10 24'/N 80)Relieve representado por normalesLeyenda de signos utilizado

    Europa. Central. 1:1850000

    Get PDF
    Coordenadas : E26 10'-E34 30'/N49 05'-N44 25'. Meridiano de Ferro. Constan ademas coordenadas según el meridiano de ParísRelieve : sombreadoLeyenda de signos utilizadosInserta : 2 mapas de altitude

    Europa. Central. 1:925000

    Get PDF
    Coordenadas : E23 30'-E28 15'/N48 20'-N45 40'. Meridiano de Ferro. Constan ademas coordenadas segun el meridiano de ParísRelieve : sombreadoLeyenda de signos utilizado

    España. Mapas generales (1879). 1:3700000

    Get PDF
    Coordenadas : O8 -O22 /N44 -N36 . Meridiano de Ferro. Constan ademas coordenadas según el meridiano de ParísRelieve : líneas perpendiculares normalesLeyenda de signos utilizadosInserta : Mapa ampliado de Lisboa. - Escala 1:15000

    HEMISFERIO SUR. Mapas fisicos (1879). 1:40000000

    Get PDF
    Relieve : líneas perpendiculares normalesLeyenda de signos utilizadosInserta 14 mapas de detall

    Inclusive V0V^0 Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions

    Full text link
    Inclusive differential cross sections dσpA/dxFd\sigma_{pA}/dx_F and dσpA/dpt2d\sigma_{pA}/dp_t^2 for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to s=41.6\sqrt {s} = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be 6.2±0.56.2\pm 0.5 and 0.66±0.070.66\pm 0.07, respectively, for \xf ≈−0.06\approx-0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions dσpA/dpt2d\sigma_{pA}/dp_t^2 also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections σpA\sigma_{pA} on the atomic mass AA of the target material is discussed, and the deduced cross sections per nucleon σpN\sigma_{pN} are compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table

    GATEKEEPER’s Strategy for the Multinational Large-Scale Piloting of an eHealth Platform: Tutorial on How to Identify Relevant Settings and Use Cases

    Get PDF
    Background: The World Health Organization’s strategy toward healthy aging fosters person-centered integrated care sustained by eHealth systems. However, there is a need for standardized frameworks or platforms accommodating and interconnecting multiple of these systems while ensuring secure, relevant, fair, trust-based data sharing and use. The H2020 project GATEKEEPER aims to implement and test an open-source, European, standard-based, interoperable, and secure framework serving broad populations of aging citizens with heterogeneous health needs. Objective: We aim to describe the rationale for the selection of an optimal group of settings for the multinational large-scale piloting of the GATEKEEPER platform. Methods: The selection of implementation sites and reference use cases (RUCs) was based on the adoption of a double stratification pyramid reflecting the overall health of target populations and the intensity of proposed interventions; the identification of a principles guiding implementation site selection; and the elaboration of guidelines for RUC selection, ensuring clinical relevance and scientific excellence while covering the whole spectrum of citizen complexities and intervention intensities. Results: Seven European countries were selected, covering Europe’s geographical and socioeconomic heterogeneity: Cyprus, Germany, Greece, Italy, Poland, Spain, and the United Kingdom. These were complemented by the following 3 Asian pilots: Hong Kong, Singapore, and Taiwan. Implementation sites consisted of local ecosystems, including health care organizations and partners from industry, civil society, academia, and government, prioritizing the highly rated European Innovation Partnership on Active and Healthy Aging reference sites. RUCs covered the whole spectrum of chronic diseases, citizen complexities, and intervention intensities while privileging clinical relevance and scientific rigor. These included lifestyle-related early detection and interventions, using artificial intelligence–based digital coaches to promote healthy lifestyle and delay the onset or worsening of chronic diseases in healthy citizens; chronic obstructive pulmonary disease and heart failure decompensations management, proposing integrated care management based on advanced wearable monitoring and machine learning (ML) to predict decompensations; management of glycemic status in diabetes mellitus, based on beat to beat monitoring and short-term ML-based prediction of glycemic dynamics; treatment decision support systems for Parkinson disease, continuously monitoring motor and nonmotor complications to trigger enhanced treatment strategies; primary and secondary stroke prevention, using a coaching app and educational simulations with virtual and augmented reality; management of multimorbid older patients or patients with cancer, exploring novel chronic care models based on digital coaching, and advanced monitoring and ML; high blood pressure management, with ML-based predictions based on different intensities of monitoring through self-managed apps; and COVID-19 management, with integrated management tools limiting physical contact among actors. Conclusions: This paper provides a methodology for selecting adequate settings for the large-scale piloting of eHealth frameworks and exemplifies with the decisions taken in GATEKEEPER the current views of the WHO and European Commission while moving forward toward a European Data Space
    • …
    corecore