31 research outputs found

    Metabolic effects of PCSK9 inhibition with Evolocumab in subjects with elevated Lp(a)

    Get PDF
    Background: Epidemiological studies substantiated that subjects with elevated lipoprotein(a) [Lp(a)] have a markedly increased cardiovascular risk. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) lowers both LDL cholesterol (LDL-C) as well as Lp(a), albeit modestly. Effects of PCSK9 inhibition on circulating metabolites such as lipoprotein subclasses, amino acids and fatty acids remain to be characterized. Methods: We performed nuclear magnetic resonance (NMR) metabolomics on plasma samples derived from 30 individuals with elevated Lp(a) (> 150 mg/dL). The 30 participants were randomly assigned into two groups, placebo (N = 14) and evolocumab (N = 16). We assessed the effect of 16 weeks of evolocumab 420 mg Q4W treatment on circulating metabolites by running lognormal regression analyses, and compared this to placebo. Subsequently, we assessed the interrelationship between Lp(a) and 14 lipoprotein subclasses in response to treatment with evolocumab, by running multilevel multivariate regression analyses. Results: On average, evolocumab treatment for 16 weeks resulted in a 17% (95% credible interval: 8 to 26%, P < 0.001) reduction of circulating Lp(a), coupled with substantial reduction of VLDL, IDL and LDL particles as well as their lipid contents. Interestingly, increasing concentrations of baseline Lp(a) were associated with larger reduction in triglyceride-rich VLDL particles after evolocumab treatment. Conclusions: Inhibition of PCSK9 with evolocumab markedly reduced VLDL particle concentrations in addition to lowering LDL-C. The extent of reduction in VLDL particles depended on the baseline level of Lp(a). Our findings suggest a marked effect of evolocumab on VLDL metabolism in subjects with elevated Lp(a). Trial registration: Clinical trial registration information is registered at ClinicalTrials.gov on April 14, 2016 with the registration number NCT02729025.</p

    Low rate of cardiac events in first-degree relatives of diagnosis-negative young sudden unexplained death syndrome victims during follow-up

    Get PDF
    BACKGROUND: Sudden unexplained death syndrome (SUDS) in young individuals often results from inherited cardiac disease. Accordingly, comprehensive examination in surviving first-degree relatives unmasks such disease in approximately 35% of the families. It is unknown whether individuals from diagnosis-negative families are at risk of developing manifest disease or cardiac events during follow-up.OBJECTIVE: This study aimed to study the prognosis of first-degree relatives of young SUDS victims, in whom the initial cardiologic and genetic examination did not lead to a diagnosis.METHODS: We retrieved vital status of surviving first-degree relatives from 83 diagnosis-negative families who presented to our cardiogenetics department between 1996 and 2009 because of SUDS in ≥1 relatives aged 1-50 years. Moreover, we contacted relatives who previously visited our center for detailed information.RESULTS: We obtained detailed information (median follow-up 6.6 years; interquartile range 4.7-9.6 years) in 340 of 417 first-degree relatives (81.5%) from 77 of 83 families (92.8%). Vital status, available in 405 relatives (97.1%), showed that 20 relatives (4.9%) died during follow-up, including 1 natural death before the age of 50. This girl belonged to a family with multiple cases of idiopathic ventricular fibrillation and SUDS, including another successfully resuscitated sibling during follow-up. Two hundred thirty-four of 340 first-degree relatives (68.8%) underwent cardiologic examination. Of these, 76 (32.5%) were reevaluated. Inherited cardiac disease was diagnosed in 3 families (3.6%).CONCLUSION: In first-degree relatives of young SUDS victims with no manifest abnormalities during the initial examination, the risk of developing manifest inherited cardiac disease or cardiac events during follow-up is low. This does not apply to families with obvious familial SUDS.</p

    Impact of cholesterol on proinflammatory monocyte production by the bone marrow.

    Get PDF
    AIM: Preclinical work indicates that low-density lipoprotein cholesterol (LDL-C) not only drives atherosclerosis by directing the innate immune response at plaque level but also augments proinflammatory monocyte production in the bone marrow (BM) compartment. In this study, we aim to unravel the impact of LDL-C on monocyte production in the BM compartment in human subjects. METHODS AND RESULTS: A multivariable linear regression analysis in 12 304 individuals of the EPIC-Norfolk prospective population study showed that LDL-C is associated with monocyte percentage (β = 0.131 [95% CI: 0.036-0.225]; P = 0.007), at the expense of granulocytes (β = -0.876 [95% CI: -1.046 to -0.705]; P < 0.001). Next, we investigated whether altered haematopoiesis could explain this monocytic skewing by characterizing CD34+ BM haematopoietic stem and progenitor cells (HSPCs) of patients with familial hypercholesterolaemia (FH) and healthy normocholesterolaemic controls. The HSPC transcriptomic profile of untreated FH patients showed increased gene expression in pathways involved in HSPC migration and, in agreement with our epidemiological findings, myelomonocytic skewing. Twelve weeks of cholesterol-lowering treatment reverted the myelomonocytic skewing, but transcriptomic enrichment of monocyte-associated inflammatory and migratory pathways persisted in HSPCs post-treatment. Lastly, we link hypercholesterolaemia to perturbed lipid homeostasis in HSPCs, characterized by lipid droplet formation and transcriptomic changes compatible with increased intracellular cholesterol availability. CONCLUSIONS: Collectively, these data highlight that LDL-C impacts haematopoiesis, promoting both the number and the proinflammatory activation of circulating monocytes. Furthermore, this study reveals a potential contributory role of HSPC transcriptomic reprogramming to residual inflammatory risk in FH patients despite cholesterol-lowering therapy

    The vicious inflammatory circle in atherosclerosis

    No full text

    Metabolic effects of PCSK9 inhibition with Evolocumab in subjects with elevated Lp(a)

    No full text
    BACKGROUND: Epidemiological studies substantiated that subjects with elevated lipoprotein(a) [Lp(a)] have a markedly increased cardiovascular risk. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) lowers both LDL cholesterol (LDL-C) as well as Lp(a), albeit modestly. Effects of PCSK9 inhibition on circulating metabolites such as lipoprotein subclasses, amino acids and fatty acids remain to be characterized. METHODS: We performed nuclear magnetic resonance (NMR) metabolomics on plasma samples derived from 30 individuals with elevated Lp(a) (> 150 mg/dL). The 30 participants were randomly assigned into two groups, placebo (N = 14) and evolocumab (N = 16). We assessed the effect of 16 weeks of evolocumab 420 mg Q4W treatment on circulating metabolites by running lognormal regression analyses, and compared this to placebo. Subsequently, we assessed the interrelationship between Lp(a) and 14 lipoprotein subclasses in response to treatment with evolocumab, by running multilevel multivariate regression analyses. RESULTS: On average, evolocumab treatment for 16 weeks resulted in a 17% (95% credible interval: 8 to 26%, P < 0.001) reduction of circulating Lp(a), coupled with substantial reduction of VLDL, IDL and LDL particles as well as their lipid contents. Interestingly, increasing concentrations of baseline Lp(a) were associated with larger reduction in triglyceride-rich VLDL particles after evolocumab treatment. CONCLUSIONS: Inhibition of PCSK9 with evolocumab markedly reduced VLDL particle concentrations in addition to lowering LDL-C. The extent of reduction in VLDL particles depended on the baseline level of Lp(a). Our findings suggest a marked effect of evolocumab on VLDL metabolism in subjects with elevated Lp(a). TRIAL REGISTRATION: Clinical trial registration information is registered at ClinicalTrials.gov on April 14, 2016 with the registration number NCT02729025

    The maturation of a "neural-hematopoietic' inflammatory axis in cardiovascular disease

    No full text
    Purpose of reviewAtherogenesis is the result of a complex interplay between lipids and innate immune cells, which are descendants of upstream progenitors residing in hematopoietic organs. In this review, we will discuss recent advances in the connection between hematopoiesis and atherogenesis.Recent findingsThe relevance of a neural-hematopoietic axis was recently supported by the demonstration of a correlation between metabolic activity in the amygdala and the bone marrow. During follow-up, both amygdalar and bone marrow activities also predicted cardiovascular risk in patients, lending further support to a connection between neural stress and cardiovascular events mediated via increased hematopoietic activity.In parallel, functional changes in hematopoietic stem cells may also convey cardiovascular risk. In experimental models, knock-out of the ten-eleven translocation 2 (TET2) gene leading to monocyte-macrophage hyperresponsiveness, was associated with accelerated atherogenesis in murine experiments. In humans, whole-exome sequencing reporting on the clonal hematopoiesis of indeterminate potential' gene substantiated a two-fold elevated risk for developing coronary heart disease compared with noncarriers.SummaryRecent studies support the relevance of a neural-hematopoietic' inflammatory axis and clonal hematopoiesis as drivers of atherogenesis in humans. These data warrant further studies addressing the role of novel hematopoietic' targets for the treatment of patients with increased cardiovascular ris

    Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes

    No full text
    Background: Lipoproteins are important regulators of hematopoietic stem and progenitor cell (HSPC) biology, predominantly affecting myelopoiesis. Since myeloid cells, including monocytes and macrophages, promote the inflammatory response that propagates atherosclerosis, it is of interest whether the atherogenic low-density lipoprotein (LDL)-like particle lipoprotein(a) [Lp(a)] contributes to atherogenesis via stimulating myelopoiesis. Methods & results: To assess the effects of Lp(a)-priming on long-term HSPC behavior we transplanted BM of Lp(a) transgenic mice, that had been exposed to elevated levels of Lp(a), into lethally-irradiated C57Bl6 mice and hematopoietic reconstitution was analyzed. No differences in HSPC populations or circulating myeloid cells were detected ten weeks after transplantation. Likewise, in vitro stimulation of C57Bl6 BM cells for 24 h with Lp(a) did not affect colony formation, total cell numbers or myeloid populations 7 days later. To assess the effects of elevated levels of Lp(a) on myelopoiesis, C57Bl6 bone marrow (BM) cells were stimulated with lp(a) for 24 h, and a marked increase in granulocyte-monocyte progenitors, pro-inflammatory Ly6high monocytes and macrophages was observed. Seven days of continuous exposure to Lp(a) increased colony formation and enhanced the formation of pro-inflammatory monocytes and macrophages. Antibody-mediated neutralization of oxidized phospholipids abolished the Lp(a)-induced effects on myelopoiesis. Conclusion: Lp(a) enhances the production of inflammatory monocytes at the bone marrow level but does not induce cell-intrinsic long-term priming of HSPCs. Given the short-term and direct nature of this effect, we postulate that Lp(a)-lowering treatment has the capacity to rapidly revert this multi-level inflammatory response
    corecore