872 research outputs found

    Dependence of implantation angle of the transverse, intrafascicular electrode (TIME) on selective activation of pig forelimb muscles

    Get PDF

    Оценка средней скорости на 10-и метровой глубине для разрезов с высокоскоростным верхним слоем при микрорайонировании

    Get PDF
    Описываются способы оценки средней скорости поперечной волны на 10-и метровой глубине для разрезов, верхняя часть которых представлена уплотненным насыпным грунтом или мерзлыми породами

    Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes.

    Get PDF
    BackgroundMahi-mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi-mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi-mahi from the zygote stage to adult has been described.ResultsA comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development.ConclusionRemarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm-water, active Teleost fishes

    Flexible Bioelectronic Devices Based on Micropatterned Monolithic Carbon Fiber Mats

    Get PDF
    Polymer-derived carbon can serve as an electrode material in multimodal neural stimulation, recording, and neurotransmitter sensing platforms. The primary challenge in its applicability in implantable, flexible neural devices is its characteristic mechanical hardness that renders it difficult to fabricate the entire device using only carbon. A microfabrication technique is introduced for patterning flexible, cloth-like, polymer-derived carbon fiber (CF) mats embedded in polyimide (PI), via selective reactive ion etching. This scalable, monolithic manufacturing method eliminates any joints or metal interconnects and creates electrocorticography electrode arrays based on a single CF mat. The batch-fabricated CF/PI composite structures, with critical dimension of 12.5 µm, are tested for their mechanical, electrical, and electrochemical stability, as well as to chemicals that mimic acute postsurgery inflammatory reactions. Their recording performance is validated in rat models. Reported CF patterning process can benefit various carbon microdevices that are expected to feature flexibility, material stability, and biocompatibility

    Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study

    Get PDF
    Stable interconnection to neurons in vivo over long time-periods is critical for the success of future advanced neuroelectronic applications. The inevitable foreign body reaction towards implanted materials challenges the stability and an active intervention strategy would be desirable to treat inflammation locally. Here, we investigate whether controlled release of the anti-inflammatory drug Dexamethasone from flexible neural microelectrodes in the rat hippocampus has an impact on probe-tissue integration over 12 weeks of implantation. The drug was stored in a conducting polymer coating (PEDOT/Dex), selectively deposited on the electrode sites of neural probes, and released on weekly basis by applying a cyclic voltammetry signal in three electrode configuration in fully awake animals. Dex-functionalized probes provided stable recordings and impedance characteristics over the entire chronic study. Histological evaluation after 12 weeks of implantation revealed an overall low degree of inflammation around all flexible probes whereas electrodes exposed to active drug release protocols did have neurons closer to the electrode sites compared to controls. The combination of flexible probe technology with anti-inflammatory coatings accordingly offers a promising approach for enabling long-term stable neural interfaces
    corecore