17 research outputs found

    Visualisierung der intrazellulären Aufnahme und des Metabolismus von Lipiden und Lipoproteinen mittels Raman-Spektroskopie

    Get PDF
    Kardiovaskuläre Erkrankungen sind die häufigsten natürlichen Todesursachen weltweit. Der Krankheitsprozess entwickelt sich oft schleichend über Jahrzehnte ohne Symptome und wirkt sich erst im höheren Alter aus. Im schlimmsten Fall kommt es zu einem Herzinfarkt oder Schlaganfall. Eine Früherkennung, zu einem Zeitpunkt an dem sich noch keine Symptome äußern, kann die Prognose und Therapie der Patienten deutlich verbessern. Die vorliegende Dissertation thematisiert die Visualisierung des Lipidmetabolismus von Makrophagen durch Raman-spektroskopische Bildgebungsverfahren. Die Interaktion zwischen Lipiden und Makrophagen spielt eine Schlüsselrolle in der Entstehung der Atherosklerose, die prominenteste unter den kardiovaskulären Erkrankungen und Hauptursache für Schlaganfälle und Herzinfarkte. Um Erkenntnisse über die Mechanismen der Atherogenese auf Einzelzellebene zu gewinnen, wurden Inkubationsstudien mit unterschiedlichen Aufnahmeprozessen sowie verschiedenen Fettsäuren und Triglyceriden durchgeführt. Eine umfangreiche Übersicht über den Albumin- und endozytotischen Lipoproteintransportweg konnte erstellt werden. Zudem wurde der Beitrag von Lipiden zur Schaumzellbildung von Makrophagen untersucht. Die Kombination von Raman-Spektroskopie mit stabiler Isotopenmarkierung durch Deuterium ermöglichte es die Aufnahmekinetik von Lipiden und deren Speicherprozess in intrazellulären Lipidtropfen auf Einzelzellebene zu erforschen. Die durch die Deuterierung nur geringfügigen Änderungen stellen ein leistungsfähiges Pendant zur etablierten Fluoreszenzmikroskopie dar

    Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging

    Get PDF
    The investigation of the biochemical composition of pollen grains is of the utmost interest for several environmental aspects, such as their allergenic potential and their changes in growth conditions due to climatic factors. In order to fully understand the composition of pollen grains, not only is an in-depth analysis of their molecular components necessary but also spatial information of, e.g., the thickness of the outer shell, should be recorded. However, there is a lack of studies using molecular imaging methods for a spatially resolved biochemical composition on a single-grain level. In this study, Raman spectroscopy was implemented as an analytical tool to investigate birch pollen by imaging single pollen grains and analyzing their spectral profiles. The imaging modality allowed us to reveal the layered structure of pollen grains based on the biochemical information of the recorded Raman spectra. Seven different birch pollen species collected at two different locations in Germany were investigated and compared. Using chemometric algorithms such as hierarchical cluster analysis and multiple-curve resolution, several components of the grain wall, such as sporopollenin, as well as the inner core presenting high starch concentrations, were identified and quantified. Differences in the concentrations of, e.g., sporopollenin, lipids and proteins in the pollen species at the two different collection sites were found, and are discussed in connection with germination and other growth processes

    Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique

    Get PDF
    Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.Comment: Accepted and Published by "Sensors" Journal, 19 pages, 8 figure

    Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra

    Get PDF
    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC

    Imaging the invisible—Bioorthogonal Raman probes for imaging of cells and tissues

    No full text
    A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags. © 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore