21,129 research outputs found

    A Perspective on Hadron Physics

    Full text link
    The phenomena of confinement and dynamical chiral symmetry breaking are basic to understanding hadron observables. They can be explored using Dyson-Schwinger equations. The existence of a systematic, nonperturbative and symmetry preserving truncation of these equations enables the proof of exact results in QCD, and their illustration using simple but accurate models. We provide a sketch of the material qualitative and quantitative success that has been achieved in the study of pseudoscalar and vector mesons. Efforts are now turning to the study of baryons, which we exemplify via a calculation of nucleon weak and pionic form factors.Comment: 16 pages, 5 figures. Contribution to the proceedings of the "Xth Mexican Workshop on Particles and Fields," Morelia, Mexico, 6-12 Nov. 200

    Catalytic surface effects on space thermal protection system during Earth entry of flights STS-2 through STS-5

    Get PDF
    An on going orbiter experiment catalytic surface effects experiment being conducted on the Space Shuttle is discussed. The catalytic surface effects experiment was peformed on four of the five flights of Columbia. Temperature time histories and distributions along the midfuselage and wing of the orbiter were used to determine the surface catalytic efficiency of the baseline high temperature reusable surface insulation. Correlation parameters are shown that allow the comparison of all flight data with predictions from the design and surface emittance decreased as a result of contaminants during the five flights of the Space Shuttle

    Decay of the Maxwell field on the Schwarzschild manifold

    Get PDF
    We study solutions of the decoupled Maxwell equations in the exterior region of a Schwarzschild black hole. In stationary regions, where the Schwarzschild coordinate rr ranges over 2M<r1<r<r22M < r_1 < r < r_2, we obtain a decay rate of t1t^{-1} for all components of the Maxwell field. We use vector field methods and do not require a spherical harmonic decomposition. In outgoing regions, where the Regge-Wheeler tortoise coordinate is large, r>ϵtr_*>\epsilon t, we obtain decay for the null components with rates of ϕ+α<Cr5/2|\phi_+| \sim |\alpha| < C r^{-5/2}, ϕ0ρ+σ<Cr2tr1/2|\phi_0| \sim |\rho| + |\sigma| < C r^{-2} |t-r_*|^{-1/2}, and ϕ1α<Cr1tr1|\phi_{-1}| \sim |\underline{\alpha}| < C r^{-1} |t-r_*|^{-1}. Along the event horizon and in ingoing regions, where r<0r_*<0, and when t+r1t+r_*1, all components (normalized with respect to an ingoing null basis) decay at a rate of C \uout^{-1} with \uout=t+r_* in the exterior region.Comment: 37 pages, 5 figure

    A short proof that the Coulomb-gauge potentials yield the retarded fields

    Full text link
    A short demonstration that the potentials in the Coulomb gauge yield the retarded electric and magnetic fields is presented. This demonstration is relatively simple and can be presented in an advanced undergraduate curse of electromagnetic theory

    Archimedean-type force in a cosmic dark fluid: II. Qualitative and numerical study of a multistage Universe expansion

    Get PDF
    In this (second) part of the work we present the results of numerical and qualitative analysis, based on a new model of the Archimedean-type interaction between dark matter and dark energy. The Archimedean-type force is linear in the four-gradient of the dark energy pressure and plays a role of self-regulator of the energy redistribution in a cosmic dark fluid. Because of the Archimedean-type interaction the cosmological evolution is shown to have a multistage character. Depending on the choice of the values of the model guiding parameters,the Universe's expansion is shown to be perpetually accelerated, periodic or quasiperiodic with finite number of deceleration/acceleration epochs. We distinguished the models, which can be definitely characterized by the inflation in the early Universe, by the late-time accelerated expansion and nonsingular behavior in intermediate epochs, and classified them with respect to a number of transition points. Transition points appear, when the acceleration parameter changes the sign, providing the natural partition of the Universe's history into epochs of accelerated and decelerated expansion. The strategy and results of numerical calculations are advocated by the qualitative analysis of the instantaneous phase portraits of the dynamic system associated with the key equation for the dark energy pressure evolution.Comment: 15 pages, 12 figures, Part II, typos corrected, Fig.4 replaced, references correcte

    The Measure Problem in Cosmology

    Full text link
    The Hamiltonian structure of general relativity provides a natural canonical measure on the space of all classical universes, i.e., the multiverse. We review this construction and show how one can visualize the measure in terms of a "magnetic flux" of solutions through phase space. Previous studies identified a divergence in the measure, which we observe to be due to the dilatation invariance of flat FRW universes. We show that the divergence is removed if we identify universes which are so flat they cannot be observationally distinguished. The resulting measure is independent of time and of the choice of coordinates on the space of fields. We further show that, for some quantities of interest, the measure is very insensitive to the details of how the identification is made. One such quantity is the probability of inflation in simple scalar field models. We find that, according to our implementation of the canonical measure, the probability for N e-folds of inflation in single-field, slow-roll models is suppressed by of order exp(-3N) and we discuss the implications of this result.Comment: 22 pages, 6 figures. Revised version with clarifying remarks on meaning of adopted measure, extra references and minor typographical correction

    Dynamical chiral symmetry breaking and a critical mass

    Get PDF
    On a bounded, measurable domain of non-negative current-quark mass, realistic models of QCD's gap equation can simultaneously admit two inequivalent dynamical chiral symmetry breaking (DCSB) solutions and a solution that is unambiguously connected with the realisation of chiral symmetry in the Wigner mode. The Wigner solution and one of the DCSB solutions are destabilised by a current-quark mass and both disappear when that mass exceeds a critical value. This critical value also bounds the domain on which the surviving DCSB solution possesses a chiral expansion. This value can therefore be viewed as an upper bound on the domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly valid for physical quantities. For a pseudoscalar meson constituted of equal mass current-quarks, it corresponds to a mass m_{0^-}~0.45GeV. In our discussion we employ properties of the two DCSB solutions of the gap equation that enable a valid definition of in the presence of a nonzero current-mass. The behaviour of this condensate indicates that the essentially dynamical component of chiral symmetry breaking decreases with increasing current-quark mass.Comment: 9 pages, 7 figures. Minor wording change

    The health and wellbeing of offshore workers: a narrative review of the published literature.

    Get PDF
    Recent developments within the offshore industry have highlighted the role that health and wellbeing plays in ensuring the safety and longevity of the offshore workforce. Developing an understanding of the overall health and wellbeing of offshore workers could aid future developments. This narrative review aims to identify and synthesise the relevant published literature on offshore health and wellbeing. The Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Medical Literature Analysis and Retrieval System Online, PsycArticles, and Web of Science databases were searched with publication search dates limited from January 1994 to November 2014. Twenty-six studies were identified and covered aspects of occupational stress; mental wellbeing; body mass index; diet; physical activity; musculoskeletal disorder; smoking; alcohol and drug use; shift work amongst offshore workers. This narrative review has highlighted a lack of high quality and relevant research. There is a particular need to research workers' participation in self care activities and the resultant influence of domains on health and well being. NOTE: publisher link is not currently working (last checked 2019-01-25

    Some Aspects of Liquefaction Assessment of Duncan Dam

    Get PDF
    A comprehensive program of field, laboratory and analytical investigations was carried out to assess the potential for liquefaction of the foundation soils and seismic stability of Duncan Dam. Duncan Oam is located on Duncan River in southeastern British Columbia, Canada. The 39 m high zoned earthfill dam is founded on a thick sequence of sands, silts and gravels. The liquefaction studies were carried out in two phases between 1988 and 1992 to characterize in detail the engineering properties of the foundation soils; and to assess its potential for triggering liquefaction, and the post liquefaction stability and deformation of the dam using parameters based on two approaches; one a site specific laboratory based direct method (Lab.method) and the other an indirect method (Seed\u27s method) which is based on field penetration data and field experience during past earthquakes. This paper describes some advanced aspects of the field and laboratory investigations including laboratory testing of undisturbed soil samples obtained after freezing the ground insitu. The influence of confining stress (K0) and initial static shear stress (K0) on liquefaction were investigated and site specific correlations for K0 and K. are presented. The laboratory investigations indicate that the residual strengths of the liquefied sand is a function of initial consolidation stress
    corecore