4,512 research outputs found

    New Approaches to Filling the Gap in Tuberculosis Drug Discovery

    Get PDF
    For the first time in decades, say the authors, there is a tuberculosis drug pipeline, but the paucity of candidates is still cause for alarm

    High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis

    Get PDF
    To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to alig

    Mycobacterium tuberculosis and the host response

    Get PDF
    Mycobacterium tuberculosis remains a leading cause of morbidity and mortality worldwide. Advances reported at a recent international meeting highlight insights and controversies in the genetics of M. tuberculosis and the infected host, the nature of protective immune responses, adaptation of the bacillus to host-imposed stresses, animal models, and new techniques

    High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis

    Get PDF
    To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align

    Development of a repressible mycobacterial promoter system based on two transcriptional repressors

    Get PDF
    Tightly regulated gene expression systems represent invaluable tools for studying gene function and for the validation of drug targets in bacteria. While several regulated bacterial promoters have been characterized, few of them have been successfully used in mycobacteria. In this article we describe the development of a novel repressible promoter system effective in both fast- and slow-growing mycobacteria based on two chromosomally encoded repressors, dependent on tetracycline (TetR) and pristinamycin (Pip), respectively. This uniqueness results in high versatility and stringency. Using this method we were able to obtain an ftsZ conditional mutant in Mycobacterium smegmatis and a fadD32 conditional mutant in Mycobacterium tuberculosis, confirming their essentiality for bacterial growth in vitro. This repressible promoter system could also be exploited to regulate gene expression during M. tuberculosis intracellular growt

    Development of a repressible mycobacterial promoter system based on two transcriptional repressors

    Get PDF
    Tightly regulated gene expression systems represent invaluable tools for studying gene function and for the validation of drug targets in bacteria. While several regulated bacterial promoters have been characterized, few of them have been successfully used in mycobacteria. In this article we describe the development of a novel repressible promoter system effective in both fast- and slow-growing mycobacteria based on two chromosomally encoded repressors, dependent on tetracycline (TetR) and pristinamycin (Pip), respectively. This uniqueness results in high versatility and stringency. Using this method we were able to obtain an ftsZ conditional mutant in Mycobacterium smegmatis and a fadD32 conditional mutant in Mycobacterium tuberculosis, confirming their essentiality for bacterial growth in vitro. This repressible promoter system could also be exploited to regulate gene expression during M. tuberculosis intracellular growth

    Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression

    Get PDF
    MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL3 knockdown strain of M. tuberculosis. Downregulation of mmpL3 led to a stop in bacterial division and rapid cell death, preceded by the accumulation of TDM precursors. MmpL3 was also shown to be essential for growth in monocyte-derived human macrophages. Using RNA-seq we also found that MmpL3 depletion caused up-regulation of 47 genes and down-regulation of 23 genes (at least 3-fold change and false discovery rate <= 1%). Several genes related to osmoprotection and metal homeostasis were induced, while several genes related to energy production and mycolic acids biosynthesis were repressed suggesting that inability to synthesize a correct outer membrane leads to changes in cellular permeability and a metabolic downshift
    corecore