29,636 research outputs found

    Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits

    Get PDF
    Tidal coupling between members of a compact binary system can have an interesting and important influence on that binary's dynamical inspiral. Tidal coupling also distorts the binary's members, changing them (at lowest order) from spheres to ellipsoids. At least in the limit of fluid bodies and Newtonian gravity, there are simple connections between the geometry of the distorted ellipsoid and the impact of tides on the orbit's evolution. In this paper, we develop tools for investigating tidal distortions of rapidly rotating black holes using techniques that are good for strong-field, fast-motion binary orbits. We use black hole perturbation theory, so our results assume extreme mass ratios. We develop tools to compute the distortion to a black hole's curvature for any spin parameter, and for tidal fields arising from any bound orbit, in the frequency domain. We also develop tools to visualize the horizon's distortion for black hole spin a/M≤3/2a/M \le \sqrt{3}/2 (leaving the more complicated a/M>3/2a/M > \sqrt{3}/2 case to a future analysis). We then study how a Kerr black hole's event horizon is distorted by a small body in a circular, equatorial orbit. We find that the connection between the geometry of tidal distortion and the orbit's evolution is not as simple as in the Newtonian limit.Comment: 37 pages, 8 figures. Accepted for publication to Physical Review D. This version corrects a number of typographical errors found when reviewing the page proof

    Hemiparasitic plant impacts animal and plant communities across four trophic levels

    Get PDF
    1.Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both sub-dominant species and parasites can have a disproportionately large impact. 2.Here we report the impacts of an organism that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. Whilst the impact of parasitic angiosperms on their hosts and, to a lesser degree, co-existing plant species, have been well characterized, much less is known about their impacts on higher trophic levels. 3.We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species rich grassland, comparing the plant and invertebrate communities in plots where it was removed, at natural densities or at enhanced densities. 4.Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators and detritivores. 5.The hemiparasite R. minor, despite being a sub-dominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite, emphasizing its role as a keystone species in grassland communitie

    Millisecond accuracy video display using OpenGL under Linux

    Get PDF
    To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time

    Natural Chaotic Inflation in Supergravity

    Get PDF
    We propose a chaotic inflation model in supergravity. In the model the K\"ahler potential has a Nambu-Goldstone-like shift symmetry of the inflaton chiral multiplet which ensures the flatness of the inflaton potential beyond the Planck scale. We show that the chaotic inflation naturally takes place by introducing a small breaking term of the shift symmetry in the superpotential. This may open a new branch of model building for inflationary universe in the framework of supergravity.Comment: Some typos are corrected. To appear in Phys. Rev. Let

    Cosmological perturbation theory and conserved quantities in the large-scale limit

    Get PDF
    The linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid universe is reconsidered and formally simplified by introducing new covariant and gauge-invariant variables with physical interpretations on hypersurfaces of constant expansion, constant curvature or constant energy density. The existence of conserved perturbation quantities on scales larger than the Hubble scale is discussed. The quantity which is conserved on large scales in a flat background universe may be expressed in terms of the fractional, spatial gradient of the energy density on constant expansion hypersurfaces or, alternatively, with the help of expansion or curvature perturbation variables on hypersurfaces of constant energy density. For nonvanishing background curvature the perturbation dynamics is most suitably described in terms of energy density perturbations on hypersurfaces of constant curvature.Comment: 12 pages, Revtex, to appear in Class.Quantum Gra

    A New delta N Formalism for Multi-Component Inflation

    Full text link
    The delta N formula that relates the final curvature perturbation on comoving slices to the inflaton perturbation on flat slices after horizon crossing is a powerful and intuitive tool to compute the curvature perturbation spectrum from inflation. However, it is customarily assumed further that the conventional slow-roll condition is satisfied, and satisfied by all components, during horizon crossing. In this paper, we develop a new delta N formalism for multi-component inflation that can be applied in the most general situations. This allows us to generalize the idea of general slow-roll inflation to the multi-component case, in particular only applying the general slow-roll condition to the relevant component. We compute the power spectrum of the curvature perturbation in multi-component general slow-roll inflation, and find that under quite general conditions it is invertible.Comment: 24 pages, no figur

    Inflationary models with a flat potential enforced by non-abelian discrete gauge symmetries

    Get PDF
    Non-abelian discrete gauge symmetries can provide the inflaton with a flat potential even when one takes into account gravitational strength effects. The discreteness of the symmetries also provide special field values where inflation can end via a hybrid type mechanism. An interesting feature of this method is that it can naturally lead to extremely flat potentials and so, in principle, to inflation at unusually low energy scales. Two examples of effective field theories with this mechanism are given, one with a hybrid exit and one with a mutated hybrid exit. They include an explicit example in which the single field consistency condition is violated.Comment: 24 pages, uses revtex.sty, submitted to PRD (Nov. 1999) Final version to appear in PRD. Background information on supergravity expande
    • …
    corecore