45,209 research outputs found
Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds
High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release
Metamodelling of multivariable engine models for real-time flight simulation.
Sophisticated real-time distributed flight simulation environments may be constructed from a wide range of modelling and simulation tools. In this way accuracy, detail and model flexibility may be incorporated into the simulator. Distributed components may be constructed by a wide range of methods, from high level environments such as Matlab, through coded environments such as C or Fortran to hardware-in-the- loop. In this paper the Response Surface Methodology is combined with a hyper-heuristic (evolutionary algorithm) and applied to the representation of computationally intensive non-linear multivariable engine modelling. The paper investigates the potential for metamodelling (models of models) dynamic models which were previously too slow to be included in multi-component, high resolution real-time simulation environments. A multi-dimensional gas turbine model with five primary control inputs, six environmental inputs and eleven outputs is considered. An investigation has been conducted to ascertain to what extent these systems can be approximated by response surfaces with experiments which have been designed by hyper-heuristics as a first step towards automatic modelling methodology
Nitric acid-organic mixtures surveyed for use in separation by anion exchange methods
Column elution-spectrographic analysis technique compares certain solvents directly to the methanol system, using inert rare earths instead of actinides. Distribution ratios for americium between 90 percent solvent, 10 percent 5 M nitric acid and Dowex 1 nitrate form resin for a large group of organics miscible in water was determined
Effects of Crust Ingestion on Mixer Pump Performance in Tank
In August 1999, a workshop was held at Pacific Northwest National Laboratory to discuss the effects of crust ingestion on mixer pump performance in Hanford Waste Tank 241-SY-101. The main purpose of the workshop was to evaluate the potential for crust ingestion to degrade mixing and/or damage the mixer pump. The need for a previously determined 12-inch separation between the top of the mixer pump inlet and the crust base was evaluated. Participants included a representative from the pump manufacturer, an internationally known expert in centrifugal pump theory, Hanford scientists and engineers, and operational specialists representing relevant fields of expertise.
The workshop focused on developing an understanding of the pump design, addressing the physics of entrainment of solids and gases into the pump, and assessing the effects of solids and gases on pump performance. The major conclusions are summarized as follows:
* Entrainment of a moderate amount of solids or gas from the crust should not damage the pump or reduce its lifetime, though mixing effectiveness will be somewhat reduced.
* Air binding should not damage the pump. Vibration due to ingestion of gas, solids, and objects potentially could cause radial loads that might reduce the lifetime of bearings and seals. However, significant damage would require extreme conditions not associated with the small bubbles, fine solids, and chunks of relatively weak material typical of the crust.
* The inlet duct extension opening, 235 inches from the tank bottom, should be considered the pump inlet, not the small gap at 262 inches.
* A suction vortex exists at the inlet of all pumps. The characteristics of the inlet suction vortex in the mixer pump are very hard to predict, but its effects likely extend upward several feet. Because of this, the current 12-inch limit should be replaced with criteria based on actual monitored pump performance. The most obvious criterion (in addition to current operational constraints) is to monitor discharge pressure and cease pump operation if it falls below a predetermined amount.
* There are no critically necessary tests to prove pump operability or performance before initiating the transfer and back-dilution sequence
A smart driving smartphone application : real-world effects on driving performance and glance behaviours
A smart driving Smartphone application – which offers real-time fuel efficiency and safety feedback to the driver in the vehicle – was evaluated in a real-world driving study. Forty participants drove an instrumented vehicle over a 50 minute mixed route driving scenario, with 15 being selected for video data analysis. Two conditions were adopted, one a control, the other with smart driving advice being presented to the driver. Key findings from the study showed a 4.1% improvement in fuel efficiency when using the smart driving system, and an almost 3-fold reduction in time spent travelling closer than 1.5 seconds to the vehicle in front. Glance behavior results showed that drivers spent an average of 4.3% of their time looking at the system, at an average of 0.43 seconds per glance, with no glances of greater than two seconds. In conclusion this study has shown that a smart driving system specifically developed and designed with the drivers’ information requirements in mind can lead to significant improvements in real-world driving behaviours, whilst limiting visual distraction, with the task being integrated into normal driving
Barriers to women in the UK construction industry
Purpose – This paper aims to identify the main barriers that lead to the under-representation of women in the UK construction industry. The study, funded by ConstructionSkills, seeks to explore the issues that women face and investigate the potential positive impact that continuous professional development (CPD) may have upon improving the retention and career progression of women.
Design/methodology/approach – The study uses an open-ended grounded theory (GT) approach, including 231 semi-structured questionnaires and nine focus groups with women from a range of professional occupations. All the findings were analysed using keyword analysis to identify the top two barriers that women face, alongside a series of cross-cutting key themes and issues.
Findings – The findings reveal that male-dominated organisational cultures and inflexible working practices are the main barriers to women in the UK construction industry, irrespective of job role or profession. This paper concludes by arguing for a sea-change in the expansion of CPD opportunities for women in managerial, confidence and communication based skills, with accompanying networking and support systems to facilitate the retention and advancement of women in the industry sector.
Research limitations/implications – Due to the research approach, the data are not generalisable. Therefore, researchers are advised to research and test the findings with a larger group. Researchers are also recommended to investigate the impact of expanded CPD opportunities for both men and women.
Originality/value – The paper puts forward a business case for the advancement of specific CPD training for women, to facilitate the expansion of equality and diversity in the workforce in the UK construction industry
A review of strength and conditioning internships: the UKSCA’s State of the Nation survey
Internships within the strength and conditioning (S&C) industry have become a ‘right of passage’ for any junior or student coach wanting to gain employment. They have recently been described as ‘the new degree’, implying that formal education is no longer sufficient enough to gain employment on its own. Given the importance of practical skills required to successfully deliver S&C coaching, there is an expectation that applicants for professional jobs possess an appropriate level of experience. The UKSCA decided to conduct a survey of S&C interns in order to discover just exactly what kind of experiences they receive during their internships. The results are presented and discussed below
Hemiparasitic plant impacts animal and plant communities across four trophic levels
1.Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both sub-dominant species and parasites can have a disproportionately large impact.
2.Here we report the impacts of an organism that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. Whilst the impact of parasitic angiosperms on their hosts and, to a lesser degree, co-existing plant species, have been well characterized, much less is known about their impacts on higher trophic levels.
3.We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species rich grassland, comparing the plant and invertebrate communities in plots where it was removed, at natural densities or at enhanced densities.
4.Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators and detritivores.
5.The hemiparasite R. minor, despite being a sub-dominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite,
emphasizing its role as a keystone species in grassland communitie
Numerical and experimental studies of the natural convection within a horizontal cylinder
Numerical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time-dependent natural convection within a horizontal cylinder. The early flow development and wall heat transfer are obtained after a uniformly cold wall is imposed as a boundary condition on the cylinder. Results are also obtained for a time-varying cold wall as a boundary condition with windward explicit differencing used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first-order accuracy is maintained in time and space. Experiments within a small-scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer as well as the decay of wall heat transfer with time. Agreement between temperature distributions obtained experimentally and numerically was generally good. The time decay of the dimensionless ratio of the Nusselt number to the one-fourth power of the Grashof number is found both numerically and experimentally, and good agreement is obtained between these two results over most of the cylinder wall
Experimental results of high-current arcs driven supersonically in straight and circular channels
High current electric arc characteristics magnetically driven to supersonic velocities in straight and circular channel
- …