43,056 research outputs found

    Layering Transitions and Solvation Forces in an Asymmetrically Confined Fluid

    Full text link
    We consider a simple fluid confined between two parallel walls (substrates), separated by a distance L. The walls exert competing surface fields so that one wall is attractive and may be completely wet by liquid (it is solvophilic) while the other is solvophobic. Such asymmetric confinement is sometimes termed a `Janus Interface'. The second wall is: (i) purely repulsive and therefore completely dry (contact angle 180 degrees) or (ii) weakly attractive and partially dry (the contact angle is typically in the range 160-170 degrees). At low temperatures, but above the bulk triple point, we find using classical density functional theory (DFT) that the fluid is highly structured in the liquid part of the density profile. In case (i) a sequence of layering transitions occurs: as L is increased at fixed chemical potential (mu) close to bulk gas--liquid coexistence, new layers of liquid-like density develop discontinuously. In contrast to confinement between identical walls, the solvation force is repulsive for all wall separations and jumps discontinuously at each layering transition and the excess grand potential exhibits many metastable minima as a function of the adsorption. For a fixed temperature T=0.56Tc, where Tc is the bulk critical temperature, we determine the transition lines in the L, mu plane. In case (ii) we do not find layering transitions and the solvation force oscillates about zero. We discuss how our mean-field DFT results might be altered by including effects of fluctuations and comment on how the phenomenology we have revealed might be relevant for experimental and simulation studies of water confined between hydrophilic and hydrophobic substrates, emphasizing it is important to distinguish between cases (i) and (ii).Comment: 16 pages, 13 figure

    A simplex-like search method for bi-objective optimization

    Get PDF
    We describe a new algorithm for bi-objective optimization, similar to the Nelder Mead simplex algorithm, widely used for single objective optimization. For diferentiable bi-objective functions on a continuous search space, internal Pareto optima occur where the two gradient vectors point in opposite directions. So such optima may be located by minimizing the cosine of the angle between these vectors. This requires a complex rather than a simplex, so we term the technique the \cosine seeking complex". An extra beneft of this approach is that a successful search identifes the direction of the effcient curve of Pareto points, expediting further searches. Results are presented for some standard test functions. The method presented is quite complicated and space considerations here preclude complete details. We hope to publish a fuller description in another place

    Human factors analysis of workstation design: Earth Radiation Budget Satellite Mission Operations Room

    Get PDF
    A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel

    Unreasonable mistake in self-defence: Lieser v HM Advocate

    Get PDF

    On asymptotically flat solutions of Einstein's equations periodic in time II. Spacetimes with scalar-field sources

    Full text link
    We extend the work in our earlier article [4] to show that time-periodic, asymptotically-flat solutions of the Einstein equations analytic at scri, whose source is one of a range of scalar-field models, are necessarily stationary. We also show that, for some of these scalar-field sources, in stationary, asymptotically-flat solutions analytic at scri, the scalar field necessarily inherits the symmetry. To prove these results we investigate miscellaneous properties of massless and conformal scalar fields coupled to gravity, in particular Bondi mass and its loss.Comment: 29 pages, published in Class. Quant. Grav. Replaced. Typos corrected, version which appeared in Class. Quant.Gra

    Imaging the Near Field

    Full text link
    In an earlier paper we introduced the concept of the perfect lens which focuses both near and far electromagnetic fields, hence attaining perfect resolution. Here we consider refinements of the original prescription designed to overcome the limitations of imperfect materials. In particular we show that a multi-layer stack of positive and negative refractive media is less sensitive to imperfections. It has the novel property of behaving like a fibre-optic bundle but one that acts on the near field, not just the radiative component. The effects of retardation are included and minimized by making the slabs thinner. Absorption then dominates image resolution in the near-field. The deleterious effects of absorption in the metal are reduced for thinner layers.Comment: RevTeX, (9 pages, 8 figures

    The potential energy of a 40^{40}K Fermi gas in the BCS-BEC crossover

    Full text link
    We present a measurement of the potential energy of an ultracold trapped gas of 40^{40}K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a non-interacting gas, and in the T=0 limit we extract the universal many-body parameter β\beta. We find β=0.540.12+0.05\beta = -0.54^{+0.05}_{-0.12}; this value is consistent with previous measurements using 6^{6}Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime

    A new capacitive sensor for displacement measurement in a surface force apparatus

    Full text link
    We present a new capacitive sensor for displacement measurement in a Surface Forces Apparatus (SFA) which allows dynamical measurements in the range of 0-100 Hz. This sensor measures the relative displacement between two macroscopic opaque surfaces over periods of time ranging from milliseconds to in principle an indefinite period, at a very low price and down to atomic resolution. It consists of a plane capacitor, a high frequency oscillator, and a high sensitivity frequency to voltage conversion. We use this sensor to study the nanorheological properties of dodecane confined between glass surfaces.Comment: 7 pages, 8 figure

    Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise

    Full text link
    Pair-correlated fermionic atoms are created through dissociation of weakly bound molecules near a magnetic-field Feshbach resonance. We show that correlations between atoms in different spin states can be detected using the atom shot noise in absorption images. Furthermore, using time-of-Flight imaging we have observed atom pair correlations in momentum space

    Topology and Bistability in liquid crystal devices

    Get PDF
    We study nematic liquid crystal configurations in a prototype bistable device - the Post Aligned Bistable Nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field, in a model version of the PABN cell. Firstly, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry
    corecore