1,408 research outputs found

    Implications of the 2023 Flood on the Lower Diamond Fork River, UT

    Get PDF
    The lower Diamond Fork River is located on publicly accessible land owned by the Utah Reclamation Mitigation and Conservation Commission and the United States Forest Service. It is located a 30 minute drive away from the Provo-Orem Metropolitan Area and the stream runs parallel to the Diamond Fork Road, giving anglers convenient access to several miles of publicly fishable stream. The focus of this study is the lower Diamond Fork River between US Highway 6 and the Diamond Fork Campground, UT (Figure 1)

    Documenting the decision structure in software development

    Get PDF
    Current software development paradigms focus on the products of the development process. Much of the decision making process which produces these products is outside the scope of these paradigms. The Decision-Based Software Development (DBSD) paradigm views the design process as a series of interrelated decisions which involve the identification and articulation of problems, alternates, solutions and justifications. Decisions made by programmers and analysts are recorded in a project data base. Unresolved problems are also recorded and resources for their resolution are allocated by management according to the overall development strategy. This decision structure is linked to the products affected by the relevant decision and provides a process oriented view of the resulted system. Software maintenance uses this decision view of the system to understand the rationale behind the decisions affecting the part of the system to be modified. D-HyperCase, a prototype Decision-Based Hypermedia System is described and results of applying the DBSD approach during its development are presented

    Circulating microRNAs implicate multiple atherogenic abnormalities in the long-term cardiovascular sequelae of preeclampsia

    Get PDF
    Background: Women who have had preeclampsia (PE) are at increased risk for premature cardiovascular disease (CVD). The underlying pathophysiology of this risk remains unclear, but potentially involves subclinical vascular damage or dysfunction. Alterations in the levels of circulating microRNAs may be implicated, as they are known to play pervasive roles in vascular biology. We investigated whether levels of circulating microRNAs are altered between women with premature acute coronary syndrome (ACS), with and without a history of PE. Methods: Women with premature ACS (age ≤ 55 years) were categorized based on a prior history of PE or normotensive pregnancy. Relative plasma levels of 372 microRNAs were initially assessed by polymerase chain reaction array in a subset of subjects (n = 12–13/group) matched for age, chronic hypertension, dyslipidemia, and smoking status. Candidate microRNAs were then validated in a larger cohort of ACS patients (n = 176). Results: MicroRNAs previously linked to angiogenesis (miR-126-3p), inflammation (miR-146a-5p), and cholesterol metabolism (miR-122-5p) were significantly decreased in women with prior PE compared to women with prior normotensive pregnancy (P = 0.002, 0.017, and 0.009, respectively), even after adjustment for chronic hypertension. Conclusions: Circulating levels of miR-126-3p, -146a-5p, and -122-5p were significantly decreased in women with premature ACS who reported prior PE compared to those with prior normotensive pregnancy. These data provide novel insight into potential pathways that may contribute to the increased risk of CVD following PE

    Circulating miR-206 and Wnt-signaling are associated with cardiovascular complications and a history of preeclampsia in women

    Get PDF
    Women with a history of preeclampsia (PE) have increased risk of cardiovascular disease (CVD) later in life. However, the molecular determinants underlying this risk remain unclear. We sought to understand how circulating miRNA levels are impacted by prior PE, and relate to biological pathways underpinning cardiovascular disease. RNA sequencing was used to profile plasma levels of 2578 miRNAs in a retrospective study of women with a history of PE or normotensive pregnancy, in two independent cohorts with either acute coronary syndrome (ACS) (n=17-18/group) or no ACS (n=20/group). Differential miRNA alterations were assessed in relation to a history of PE (within each cohort) or ACS (across cohorts), and compared to miRNAs previously reported to be altered during PE. A history of PE was associated with altered levels of 30 and 20 miRNAs in the ACS and non-ACS cohorts, respectively, whereas ACS exposure was associated with alterations in 259 miRNAs. MiR-206 was identified at the intersection of all comparisons relating to past/current PE and ACS exposure, and has previously been implicated in atherogenic activities related to hepatocytes, vascular smooth muscle cells and macrophages. Integration of all differentially altered miRNAs with their predicted and experimentally-validated targets in silico revealed a number of highly targeted genes with potential atherogenic functions (including NFAT5, CCND2 and SMAD2), and one significantly enriched KEGG biological pathway (Wnt signaling) that was shared between all exposure groups. This study provides novel insights into miRNAs, target genes and biological pathways that may underlie the long term cardiovascular sequelae of PE

    A proof of factorization for B -> D pi

    Get PDF
    We prove that the matrix elements of four fermion operators mediating the decay B^0 -> D^+ \pi^- and B^- -> D^0 \pi^- factor into the product of a form factor describing the B -> D transition and a convolution of a short distance coefficient with the nonperturbative pion light-cone wave function. This is shown to all orders in alpha_s, up to corrections suppressed by factors of 1/mb, 1/mc, and 1/E_pi. It is not necessary to assume that the pion state is dominated by the q-qbar Fock state.Comment: 4 pages, 3 figs, PRL versio

    Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Get PDF
    In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs). Another important function of the ISS LIS will be to provide cross-sensor calibration/validation with a number of other payloads, including the TRMM LIS and the next generation geostationary lightning mappers (e.g., GOES-R Geostationary Lightning Mapper and Meteosat Third Generation Lightning Imager). This inter-calibration will improve the long term climate monitoring provided by all these systems. Finally, the ISS LIS will extend the time-series climate record of LIS lightning observations and expand the latitudinal coverage of LIS lightning to the climate significant upper middle-latitudes

    Magnetic ground state of the Kitaev Na2_2Co2_2TeO6_6 spin liquid candidate

    Full text link
    As a candidate Kitaev material, Na2_2Co2_2TeO6_6 exhibits intriguing magnetism on a honeycomb lattice that is believed to be C3C_3-symmetric. Here we report a neutron diffraction study of high quality single crystals under aa-axis magnetic fields. Our data support the less common notion of a magnetic ground state that corresponds to a triple-q\mathbf{q} magnetic structure with C3C_3 symmetry, rather than the multi-domain zigzag structure typically assumed in prototype Kitaev spin liquid candidates. In particular, we find that the field is unable to repopulate the supposed zigzag domains, where the only alternative explanation is that the domains are strongly pinned by hitherto unidentified structural reasons. If the triple-q\mathbf{q} structure is correct then this requires reevaluation of many candidate Kitaev materials. We also find that fields beyond about 10 Tesla suppress the long range antiferromagnetic order, allowing new magnetic behavior to emerge different from that expected for a spin liquid.Comment: 4 pages, 4 figures, plus Supplemental Materia

    A Low Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms

    Get PDF
    This paper reports on a new generation of aircraft-based rotating-vane style electric field mills designed and built at NASA's Marshall Spaceflight Center. The mills have individual microprocessors that digitize the electric field signal at the mill and respond to commands from the data system computer. The mills are very sensitive (1 V/m per bit), have a wide dynamic range (115 dB), and are very low noise (+/-1 LSB). Mounted on an aircraft, these mills can measure fields from +/-1 V/m to +/-500 kV/m. Once-per-second commanding from the data collection computer to each mill allows for precise timing and synchronization. The mills can also be commanded to execute a self-calibration in flight, which is done periodically to monitor the status and health of each mill
    • …
    corecore