3,854 research outputs found
An early giant planet instability recorded in asteroidal meteorites
Giant planet migration appears widespread among planetary systems in our
Galaxy. However, the timescales of this process, which reflect the underlying
dynamical mechanisms, are not well constrained, even within the solar system.
Since planetary migration scatters smaller bodies onto intersecting orbits, it
would have resulted in an epoch of enhanced bombardment in the solar system's
asteroid belt. To accurately and precisely quantify the timescales of
migration, we interrogate thermochronologic data from asteroidal meteorites,
which record the thermal imprint of energetic collisions. We present a database
of 40K-40Ar system ages from chondrite meteorites and evaluate it with an
asteroid-scale thermal code coupled to a Markov chain Monte Carlo inversion.
Simulations require bombardment in order to reproduce the observed age
distribution and identify a bombardment event beginning ~11 million years after
the Sun formed. Our results associate a giant planet instability in our solar
system with the dissipation of the gaseous protoplanetary disk.Comment: 24 pages, 4 figures, 2 tables, 10 extended data items (8 figures, 2
tables). Under review at Nature Astronom
Integrating robotics into wildlife conservation: testing improvements to predator deterrents through movement
Background Agricultural and pastoral landscapes can provide important habitat for wildlife conservation, but sharing these landscapes with wildlife can create conflict that is costly and requires managing. Livestock predation is a good example of the challenges involving coexistence with wildlife across shared landscapes. Integrating new technology into agricultural practices could help minimize human-wildlife conflict. In this study, we used concepts from the fields of robotics (i.e., automated movement and adaptiveness) and agricultural practices (i.e., managing livestock risk to predation) to explore how integration of these concepts could aid the development of more effective predator deterrents.
Methods We used a colony of captive coyotes as a model system, and simulated predation events with meat baits inside and outside of protected zones. Inside the protected zones we used a remote-controlled vehicle with a state-of-the art, commercially available predator deterrent (i.e., Foxlight) mounted on the top and used this to test three treatments: (1) light only (i.e., without movement or adaptiveness), (2) predetermined movement (i.e., with movement and without adaptiveness), and (3) adaptive movement (i.e., with both movement and adaptiveness). We measured the time it took for coyotes to eat the baits and analyzed the data with a time-to-event survival strategy.
Results Survival of baits was consistently higher inside the protected zone, and the three movement treatments incrementally increased survival time over baseline except for the light only treatment in the nonprotected zone. Incorporating predetermined movement essentially doubled the efficacy of the light only treatment both inside and outside the protected zone. Incorporating adaptive movement exponentially increased survival time both inside and outside the protected zone. Our findings provide compelling evidence that incorporating existing robotics capabilities (predetermined and adaptive movement) could greatly enhance protection of agricultural resources and aid in the development of nonlethal tools for managing wildlife. Our findings also demonstrate the importance of marrying agricultural practices (e.g., spatial management of livestock at night) with new technology to improve the efficacy of wildlife deterrents
Multidisciplinary engagement for fencing research informs efficacy and rancher-to-researcher knowledge exchange
Across much of the Western United States, recovery of large carnivore populations is creating new challenges for livestock producers. Reducing the risks of sharing the landscape with recovering wildlife populations is critical to private working lands, which play an vital role in securing future energy, water, food, and fiber for an ever-expanding human population. Fencing is an important mitigation practice that many ranchers, land managers, and conservationists implement to reduce carnivore-livestock conflict. While fencing strategies have been reviewed in the literature, research seldom incorporates knowledge from the people who utilize fencing the most (i.e., livestock producers). Incorporating producers and practitioners early in the process of producing scientific knowledge is proving to be a critical endeavor for enhancing knowledge exchange, better evaluation of the practice, and more realistic understanding of the costs and benefits. Here, we describe how our multidisciplinary effort of co-producing knowledge informs understanding of the effectiveness of various fencing designs and more importantly provides a better mechanism for transferring this knowledge between producers, researchers, and land managers. We explain the process underway and demonstrate that incorporating producers and practitioners from the onset allows research priorities and expected outcomes to be set collaboratively, gives transparency to the agricultural community of the research process, provides a critical lens to evaluate efficacy and functionality, and will inform the practicality of fencing as a conflict prevention tool. We discuss opportunities and challenges of this co-production process and how it can be applied to other realms of fencing and conflict prevention strategies
Transgressing the moral economy: Wheelerism and management of the nationalised coal industry in Scotland
This article illuminates the links between managerial style and political economy in post-1945 Britain, and explores the origins of the 1984â1985 miners' strike, by examining in longer historical context the abrasive attitudes and policies of Albert Wheeler, Scottish Area Director of the National Coal Board (NCB). Wheeler built on an earlier emphasis on production and economic criteria, and his micro-management reflected pre-existing centralising tendencies in the industries. But he was innovative in one crucial aspect, transgressing the moral economy of the Scottish coalfield, which emphasised the value of economic security and changes by joint industrial agreement
Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.
Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease
Using a private 5G network to support the international broadcast of the coronation of HM King Charles III
Wireless cameras for news contribution feeds regularly use âbonded-cellularâ devices, which connect to and split the encoded video across multiple public mobile network SIMs. However, in high demand density environments with large crowds, the public networks can quickly become saturated and unable to sustain the necessary bitrates to support high-definition video. To overcome this and provide uncontested wireless connectivity, the largest pop-up 5G standalone non-public (private) network of its type was deployed outside Buckingham Palace and along The Mall to Admiralty Arch to support news contributions for domestic and foreign broadcasters at the Coronation of HM King Charles III, without changing the contribution workflow. (This paper first appeared in the Proceedings of the 2024 NAB Broadcast Engineering and Information Technology Conference, and is reprinted with permission. https://nabpilot.org/beitc-proceedings/
Rationale and design of a longitudinal study of cerebral small vessel diseases, clinical and imaging outcomes in patients presenting with mild ischaemic stroke: Mild Stroke Study 3
Background:
Cerebral small vessel disease is a major cause of dementia and stroke, visible on brain magnetic resonance imaging. Recent data suggest that small vessel disease lesions may be dynamic, damage extends into normal-appearing brain and microvascular dysfunctions include abnormal bloodâbrain barrier leakage, vasoreactivity and pulsatility, but much remains unknown regarding underlying pathophysiology, symptoms, clinical features and risk factors of small vessel disease.
Patients and Methods: The Mild Stroke Study 3 is a prospective observational cohort study to identify risk factors for and clinical implications of small vessel disease progression and regression among up to 300 adults with non-disabling stroke. We perform detailed serial clinical, cognitive, lifestyle, physiological, retinal and brain magnetic resonance imaging assessments over one year; we assess cerebrovascular reactivity, blood flow, pulsatility and bloodâbrain barrier leakage on magnetic resonance imaging at baseline; we follow up to four years by post and phone. The study is registered ISRCTN 12113543.
Summary:
Factors which influence direction and rate of change of small vessel disease lesions are poorly understood. We investigate the role of small vessel dysfunction using advanced serial neuroimaging in a deeply phenotyped cohort to increase understanding of the natural history of small vessel disease, identify those at highest risk of early disease progression or regression and uncover novel targets for small vessel disease prevention and therapy
- âŠ