34 research outputs found

    Cellulose Fibres Used in Building Materials

    Get PDF
    The paper presents application of cellulose fibres in a pulp form from waste paper to mortar or plaster. The pulp from waste paper substitutes a part of inorganic filler or binder in cementitious composites. The characterization of properties and use of mortar or plaster mixtures as well as wood pulp fibres used in cement-based materials is presented in the article. The results of testing the technically important parameters (density, water resistance, coefficient of thermal conductivity, tensile strength at bending) of composites which were obtained by compiling the available works are summarized

    Effect of Physical Treatment on the Properties of Composites Based on Natural Fibres

    Get PDF
    Due to the low density and high porosity of the hemp hurds, the combination of hemp and binder creates a building material with good thermal and acoustic insulation properties. Today hemp hurds can be used in high-quality products such as hemp concrete, fibre board and composites.In this paper, the attention is given to the study of the properties of lightweight composites based on modified hemp hurds as filler and MgO-cement as binder. The cohesion of the filler and of the binder is an important factor in the development of mechanical properties. The impact of ultrasonic treatment of hemp hurds and its cooking in water for 1h on the physical and mechanical properties (compressive strength, density, water absorbability, thermal conductivity) of the composites hardened in indoor condition was studied. The observation is also focused on the influence of the hemp hurds length. The durability of produced composites was studied under different conditions

    Effect of Silica Fume as a Component of Alternative Binder on the Selected Technically Important Characteristics of Bio-Aggregate-Based Composites

    No full text
    This experimental study was focused on the application of an alternative binder based on MgO, and the variation of its components by the combination of two MgO products obtained by the calcinations of natural magnesite, siliceous materials (river sand and silica fume), and alkaline admixture in the mixture for a preparation of composite based on biomass waste such as hemp hurds as organic filler. This paper presents the results of the effect of an MgO binder composition on the compressive strength of the bio-aggregate-based composites. Other physical properties, such as the bulk density, thermal conductivity coefficient, and water absorption, were also investigated. The measured strength parameters of the bio-composite samples that were hardened for 28 days demonstrate that the binder consisting of optimal calcined MgO and silica fume as a total replacement for sand ensures a good binding of the matrix with hemp hurd compared to other varied compositions of alternative binder. No significant differences in bulk density and thermal conductivity values were found for these composites. However, the bio-composite specimen with an MgO–SiO2 matrix had the highest compressive strength and achieved the lowest value of water absorption. An increase in hardening time of up to 90 days led to a significant improvement of strength as well as reduction in permeability

    Sustainable Bio-Aggregate-Based Composites Containing Hemp Hurds and Alternative Binder

    No full text
    This experimental study was focused on the application of a surface-modified hemp- hurds aggregate into composites using an alternative binder of MgO-cement. This paper presents the results of the comparative study of the parameters (chemical and physico-chemical modification, and hardening time) affecting the physical (density, thermal conductivity coefficient and water-absorption behavior) and mechanical properties (compressive strength) of the bio-aggregate-based composite. A test of the parameters of the bio-composite samples showed some differences, which were determined by the chemical and surface properties of the modified filler, and which affected the mechanisms of hardening. The bulk density values of the hemp hurd composites hardened for 28 days place this material in the lightweight category of composites. The values of water absorption and the thermal conductivity coefficient of bio-composites decreased, and the strength parameter increased with an increase in the hardening time. The lower values of compressive strength, water absorption, and thermal conductivity coefficient (except for the ethylenediaminetetraacetic-acid-treated filler) were observed in composites based on fillers chemically treated with NaOH and Ca(OH)2) compared to referential composites (based on original hemp hurds). This is related to changes in the chemical composition of hemp hurds after chemical modification. The composites with ultrasound-treated hemp hurds had the greatest strengths at each hardening time. This is related to pulping the bundles of fibers and forming a larger surface area for bonding in the matrix

    Incorporation of Cement Bypass Dust in Hydraulic Road Binder

    No full text
    This article describes utilization of a cement kiln bypass dust utilization as an added component in a hydraulic road binder. Three experimental binder mixes (BM1–BM3) with variation in the composition of the main constituents (cement clinker, ground limestone and ground granulated blast furnace slag) and constant content of bypass dust (10%) were prepared under laboratory conditions. The properties of binder constituents, fresh experimental binder mixes and hardened specimens were tested according to STN EN 13282-2 for a normal hardening hydraulic road binder. The physical and chemical properties of all binder mixes (fineness: +90 µm ≤ 15 wt.%; SO3 content: <4 wt.%) met the standard requirements. The bypass dust addition led to an increase in the water content for standard consistency of cement mixes (w/c = 0.23) and to a shortening of the initial setting time for two experimental blended cement pastes (BM1 and BM3) compared with the value required by the standard. Only BM2 with the lowest SO3 content (0.363 wt.%) and the highest percentage of granulated blast furnace slag (9.5 wt.%) and alkalis (Na2O and K2O content of 5.9 wt.%) in the binder mix met the standard value for the initial setting time (≥150 min). The results of compressive strength testing of experimental specimens after 56 days of hardening (59.2–63.9 MPa) indicate higher values than the upper limit of the standard requirement for the N4 class (≥32.5; ≤52.5 MPa)

    Water Absorption Behavior of Hemp Hurds Composites

    No full text
    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content

    Natural aggregate totally replacement by mechanically treated concrete waste

    No full text
    This paper presents the results obtained from the research focused on the utilization of crushed concrete waste aggregates as a partial or full replacement of 4/8 and 8/16 mm natural aggregates fraction in concrete strength class C 16/20. Main concrete characteristics such as workability, density and compressive strength were studied. Compressive strength testing intervals for samples with recycled concrete aggregates were 2, 7, 14 and 28 days. The amount of water in the mixtures was indicative. For mixture resulting consistency required slump grade S3 was followed. Average density of all samples is in the range of 2250 kg/m3 to 2350 kg/m3. The highest compressive strength after 28 days of curing, 34.68 MPa, reached sample, which contained 100% of recycled material in 4/8 mm fraction and 60% of recycled aggregates in 8/16 mm fraction. This achieved value was only slightly different from the compressive strength 34.41 MPa of the reference sample

    Cellulose Fibres Used in Building Materials

    No full text
    The paper presents application of cellulose fibres in a pulp form from waste paper to mortar or plaster. The pulp from waste paper substitutes a part of inorganic filler or binder in cementitious composites. The characterization of properties and use of mortar or plaster mixtures as well as wood pulp fibres used in cement-based materials is presented in the article. The results of testing the technically important parameters (density, water resistance, coefficient of thermal conductivity, tensile strength at bending) of composites which were obtained by compiling the available works are summarized

    Possibility of Using Wood Pulp in the Preparation of Cement Composites

    No full text
    Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composite
    corecore