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1. Introduction 

Particulate matter is a natural part of the atmosphere, where the solid or liquid particles are 

suspended in the air. These suspended particles, also known as suspended particulate 

matter represents a dispersion aerosol system. In the air there are many types of microscopic 

airborne particles originated from both natural and anthropogenic processes, such as 

atmospheric clouds of water droplets, photochemically generated particles, re-suspended 

particulates, fumes arising from the production of energy, etc. They are present in various 

forms, eg. mists, fumes, dust. The atmosphere contains particles of the size ranging from 

slightly larger than molecules up to hundreds of micrometers, which consists of a variety of 

chemical compounds [1]. Depending of their lifetime, the particulates observed at a location 

can be both of local origin or the product of the transport over distances of hundreds to 

thousands kilometres. 

Particulate matter is mainly classified by particle size distribution as follows [2]: Coarse 

Particles (CP) include all particles with an aerodynamic diameter (diameter of a sphere with 

unit density and mass equal to the mass of the provided particle) greater than 2.5 

micrometers and less than 10 micrometers. These particles are identified as PM2.5-10. PM10 is 

an abbreviation used for so called „thoracic" particles with the diameter under 10 μm. Fine 

Particles (FP) include all particles having an aerodynamic diameter less than 2.5 

micrometers and greater than 0.1 micrometers (PM2.5). Ultrafine Particles (UFP) include all 

particles the aerodynamic diameter of which is less than 0.1 micrometers. These size limits 

are not sharp; the cyclone and impactor pre-separators remove half of the particles at the cut 

size and larger particles with increasing efficiency. 

Increase in particulate matter air contamination and its negative impact on human health 

have resulted in efforts to monitor and identify the pollutants. The particulate mass 

concentrations in a very clean urban environment are about 10 g.m-3, which correspond to 
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2.107 particles in 1 m3. In the polluted urban air the particle concentrations are higher than 

1011 particles in 1 m3 and their mass concentrations may be higher than 100 g.m-3 [1,3]. In 

the Slovak Republic, the average annual outdoor PM10 concentrations ranged from 11.6 –18 

g.m-3 in 2009 [4].  

Danger of toxic inhalation exposure depends on both the physical and chemical 

characteristics of particulate matter and thus the study of its properties is essential to assess 

the health risks. Exposure to PM in ambient air has been linked to a number of different 

health outcomes, ranging from modest transient changes in the respiratory tract and 

impaired pulmonary function, through increased risk of symptoms requiring emergency 

room or hospital treatment, to increased risk of death from cardiovascular and respiratory 

diseases or lung cancer. The elderly, children, and people with chronic lung disease, 

influenza, or asthma, are especially sensitive to the effects of particulate matter [5]. Multiple 

studies have showed that a short-term exposure to particulate matter may associated with 

increased cardiovascular mortality [6-8]. The occurrence of particulate matters in the air 

interferes with human health not only due to its composition but also due to its specific 

properties. The large specific particle surface takes a share on the catalysis of heterogeneous 

chemical reactions and on adsorption of other pollutants and their transport [9].  

Sources of particulate matter occur in the outdoor air as well as in the indoor environment. 

Ambient air concentrations are strongly dependent on meteorological factors in contrast to 

the indoor environment which is much more stable. The suspended particulate matter 

present in the indoor air is cumulated and as reported by [10-12] the indoor particulate 

concentrations are often measured to be higher than those outdoors. With the emphasis on 

both energy conservation and efficiency, mainly new home construction can create the 

problem of indoor air pollution. Vapour barriers, tight windows, weather-stripping and 

caulk have reduced or stopped fresh air from infiltrating and replacing stale air. Special 

attention must be paid to indoor air contamination because people spend a substantial 

portion of their time in indoor environment [13].  

If indoor air pollution is investigated, both outdoor and indoor sources have to be 

considered, because the outdoor air is an important source of indoor particles pollution. 

Indoor particle concentration depends on penetration of outdoor particles into the indoor 

environment and on intensity of indoor aerosol sources [2]. Indoor particulate matter 

sources include building materials, cooking, heating and all activities related to combustion 

processes, smoking, cleaning and moving of inhabitants [14,15]. The importance of indoor 

sources depends significantly also on the number and habits of the inhabitants. It was noted 

[16] that the concentration of PM2.5 was 2.8 times higher in houses where people smoked. 

The behaviour of indoor aerosols is affected by the structural system of a building, material 

characteristics, the way of air exchange, the operating mode of indoor environment in the 

presence of inhabitants. The structural systems of a building along with the physical 

properties of the outdoor air (wind direction and intensity, the difference in the density of 

the indoor/outdoor air, the difference in the indoor/outdoor air temperatures etc.) determine 

interzonal transport of pollutants [17]. In multi-floor buildings, the flow induced by 
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buoyancy influences the motion of contaminated air within the building. Mechanical and/or 

natural ventilation and infiltration define air exchange rate, and thereby the amount of 

outdoor particles penetrating into the building interior. The efficiency of filters integrated in 

mechanical ventilation systems and natural ventilation by open windows allows the 

estimations of particle penetration in the dependence on outdoor aerosol concentration, 

whereas infiltration through cracks in the building envelope is uncontrolled and depends 

not only on physical properties of contaminated air but mainly on particle deposition on 

surface cracks [18,19].  

Operation, the number and behaviour of inhabitants, i.e. type, emission intensity and 

amount of indoor contamination sources determine temporal and spatial variations of 

indoor aerosol distribution. In addition, wet processes such as cleaning, washing, drying 

and ironing increase relative humidity which can lead to variations in particle size 

distribution [20]. Physical properties of employed building materials such as thermal 

conductivity influence surface-to-air temperature difference, thermal convection and 

thermophoresis (or thermoprecipitation). This process is significant in the winter season 

when constructions separate heated from unheated areas. Chemical composition of 

particulate matter can influence the appearance of the electrostatic charge. The total aerosol 

concentration is determined by the balance between source emissions and aerosol decay due 

to indoor air chemical processes and aerosol loss mechanisms [2]. 

This chapter aims to present the results of the investigation of both suspended and settled 

particulate matter occurring indoors. The mass concentration and surface concentration 

measured were monitored for suspended and settled particulate matter, respectively. The 

chemical composition with special regard to the metals content as well as the morphology of 

indoor particulates was studied. 

2. Indoor particulate matter decay 

The aerosol particulate decay in indoor environment occurs by two mechanisms - 

ventilation and deposition. In general, ventilation is a positive mechanism for the loss of 

particles from indoor air. However, in real conditions, it often may cause entering the 

outdoor pollutants with supplied air into the indoor environment. The extent which 

ventilation contributes to the reduction of the indoor concentrations depends on the way of 

air exchange which can be carried out by natural air change, infiltration or ventilation 

systems. If the ratio of indoor and outdoor concentrations I/O reaches a value more than 1, 

the positive venting mechanism will result in a reduction of particulate matter concentration 

due to dilution. Otherwise, the contamination of indoor air increases by addition of outdoor 

particulate matter, mainly by natural air change. Ventilation systems should ensure the 

particulate matter concentration in the indoor environment is not increasing due to 

utilization of special filters in the inlet. In addition, coarse particles in ventilation system are 

often deposited by gravitational process which also leads to the removing of particles from 

the air supplied. On the other hand, particles deposited in the pipes can be re-suspended in 

dependence on the air flow speed [21]. 
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Particle deposition is an important factor affecting indoor particle concentrations in all types 

of buildings and is considered to be a dominant mechanism of the aerosols concentration 

level decreasing [22-23]. The largest incidental losses occur as a result of particle deposition 

onto the surfaces. Due to the relatively large surface-to-volume ratio indoors, deposition has 

a much larger effect on reducing concentrations indoors than it does outdoors [19].  

Particle deposition on indoor surfaces strongly depends on particle size and is governed by 

the processes of particle diffusion toward the surfaces, which is of particular significance for 

very small particles, and of gravitational sedimentation, which is significant for larger 

particles. In addition, the presence of airflows induced by convection currents or the action 

of fans, as well as air turbulence, can increase particle transport towards the surface a thus 

the deposition. Deposition is also dependent on the surface area and on its characteristics, 

with sticky surfaces resulting in higher deposition than smooth one. The larger surface area, 

the higher probability of particle deposition, and therefore furnished rooms, with lots of 

surface area, will have a higher deposition rate than bare rooms. Additional factors affecting 

particles deposition are: the presence of surface charge, which leads to the deposition rate 

increasing; temperature gradient, resulting in convective currents and thermophoretic 

deposition; and room volume [2].  

Aerosol particles adhere when they collide with a surface. The aerosol concentration at the 

surface is zero and the concentration gradient is established in the region near the surface. 

The concentration gradient causes a continuous diffusion of aerosol particles to the surface, 

which leads to a gradual decay in concentration. Applying Fick´s first law of diffusion, 

deposition rate J is defined as a number of particles depositing per unit surface area per unit 

time and is given by equation (1)  
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where no is the uniform initial concentration and D is the particle diffusion coefficient [12]. 

The deposition can be also characterized in terms of deposition velocity Vdep, which is 

defined as the deposition rate divided by concentration in the equation (2) 
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The number of particles depositing on the total surface per unit time is expressed by the 

deposition loss rate coefficient β [1/s, 1/h]. This coefficient includes all the processes that 

remove the particle in enclosure (e.g. diffusion loss, gravitational settling loss and other loss 

mechanisms by external forces). In the context of regular geometry, β can be evaluated from 

the deposition velocity on different orientation of surfaces and their particular surface area, 

and can be expressed as 

 dw w du h dd dV A V A V A

V


 
                       (3) 
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where Aw, Ah and Ad are the total areas for the vertical wall, upward-facing and downward-

facing horizontal surfaces, respectively. Vdw, Vdu and Vdd are the deposition velocities for the 

vertical wall, upward-facing and downward-facing horizontal surfaces, respectively, and 

V is the volume of the enclosure [13]. 

Diffusion deposition is primaryly observed on vertical and downward-facing surfaces 

(ceilings). Deposition induced by gravitational force is observed onto upward-facing 

surfaces (wear layer of floor constructions, upward-facing areas of furnishing). Air drag 

force compared with settling particle is determined by airflow. For settling observed in still 

air (i.e. Re < 1 laminar airflow) the Stoke´s low is valid. If airflow is turbulent (Re > 1000), 

Newton resistant low is valid for settling particle. Terminal settling velocity VTS of the 

particle settling due to gravitational force is results of balance drag and gravity. VTS is 

expressed in equations (4, 5) [1]. 
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where η is the viscosity of the air, ρp a ρg are the density of the particle and the density of the 

air, dp is the particle diameter, g is the gravitational acceleration and CD the drag coefficient. 

Indoor particle deposition can be induced also by thermophoretic forces which results in 

thermoprecipitation, or by ventilation and air conditioning use which lead to the eddy 

diffusion. Thermoprecipitation may be significant in the winter season because of heating. 

The presence of a heating device seems to be related to lower concentrations of a number of 

components, such as particle mass, Cr, Zn, Ca2+, SO42- and NO3- and other as noted in 

reference [45]. 

Particles deposited on indoor surfaces create a potential reservoir from where they can be 

re-suspended whereby the secondary contamination is increased. This re-suspension effect 

can be caused by mechanical vibration, aerodynamic or electrostatic forces. 

3. Indoor air monitoring – A case study 

The monitoring of aerosol particulate matter (PM) was carried out in three rooms of the 

selected flat building in the city of Košice, Slovakia. Kitchen, living room and working room 

as representative indoor environments with different indoor sources were chosen for PM 

monitoring. Environmental tobacco smoke was considered a major source of the particles in 

the living room; cooking on the gas stove was considered a major indoor source of 

particulate matter in the kitchen. None significant indoor source was identified in the 

working room. However, a penetration of outdoor particles through large openings 

(windows, doors) or cracks and gaps through building envelope and interzonal transport 

from other rooms cannot be neglected.  
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Settled particulate matter sampling was carried out by passive methods during 28 days. The 

adjusted sampling method for ambient air was used for indoor environment. The aerosol 

particulates were captured into Petri dishes (8.5 cm diameter), installed at three height 

levels: on the floor, at height of 0.8 m from the floor and at height of 2.2 m from the floor. 

The settling of particles proceeded onto both by water filled Petri dishes (wet gravitational 

settling) and empty Petri dishes (dry gravitational settling) at each monitored level. The 

particle total mass was calculated by gravimetric method from the Petri dish mass increases; 

the surface particle concentrations were determined by standard way.  

Suspended particulate matter investigation was focused on total suspended particles (TSP) 

and thoracic fraction PM10. Investigation was carried out in the same rooms in the 

investigated flat building in the city of Košice. Measurement have included integral particles 

sampling onto a collection material (membrane filter Synpor 0.83 m pore size, 35 mm in 

diameter and PTFE filter for TSP and PM10, respectively) by sampling equipment VPS 2000 

(Envitech, Trenčín) at the constant air flow of 600 litres/hour during a sampling period of 

approximately 24 hours. Because of minimization of humidity interference and volatile 

organic matters elimination, the filters were dried at a temperature of 105C for 8 h before 

sampling than equilibrated at a constant temperature and humidity (e.g. 20C and 50% RH) 

for 24 h before and after sampling. The particulate mass concentrations were determined by 

gravimetric method from the increase of filter weight (measured by analytical balance fy 

Mettler Toledo within 0.00001 g). The average concentrations of measured particulate matter 

in studied rooms are presented in Table1. 

 

 Mean 

Settled particulate matter - surface concentration [μg.cm-2] 44.8 

Total suspended particulates - mass concentration [μg.m-3] 84.7 

PM10 - mass concentration [μg.m-3] 45.4 

PM10 / TSP ratio 0.5 

Table 1. The mean concentrations of settled and suspended particulate matter 

The surface concentrations of settled particulate matter measured in selected rooms were in 

the range 7.0 to 86.6 μg.cm-2 while the average surface concentrations for the rooms were 

calculated from 32.7 to 63.9 μg.cm-2 (Table 2). The percentage of non-dissolved portion of 

settled particulate matter was calculated by dividing of the non-dissolved mass separated 

by filters by total deposited mass [47]. 

 

Room 

Total deposited 

mass 

[μg] 

Average surface 

concentration 

[μg.cm-2] 

Non-dissolved 

mass 

[μg] 

Percentage of 

non-dissolved 

[%] 

Kitchen 44.8 x 103 63.9 17.06 x 103 38.1 

Living room 27.6 x 103 37.8 19.70 x 103 71.4 

Working room 21.7 x 103 32.7 7.36 x 103 33.9 

Table 2. Settled particulate matter and percentage of non-dissolved particles in total deposited mass 
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The highest total deposited mass was detected in the kitchen, the lowest in the working 

room (Table 2). The highest non-dissolved mass was expected as well. However, there was 

detected the highest percentage of non dissolved particulate matter in the living room. 

Fibres from carpets, textile and upholstered furniture represented the essential part of non-

dissolved from the total deposited mass (Figure 1).  

 

Figure 1. Non-dissolved particles captured on the filter 

The results of indoor particle deposition monitoring considering the three high levels in all 

monitored rooms are summarized in Table 3. Besides the standard wet deposition, the dry 

deposition was included in the study in order to investigate the re-suspension processes. 

The surface concentrations of particles ranged from 21.0 to 86.6 μg.cm-2 by wet gravitational 

settling and from 7.0 to 39.5 μg.cm-2 by dry gravitational settling in all monitored rooms. 

 

Surface concentration [μg.cm-2] 
Distance from the floor 

0.0 m 0.8 m 2.2 m 

Kitchen 

wet gravitational settling 86.62 53.50 51.59 

dry gravitational settling 39.49 27.39 24.84 

Living room 

wet gravitational settling 42.68 38.22 32.48 

dry gravitational settling 27.39 21.02 14.01 

Working room 

wet gravitational settling 47.77 29.29 21.02 

dry gravitational settling 17.19 15.92 7.01 

Table 3. Surface concentration of particulate matter 

The highest surface concentrations of particulate matters were measured in the kitchen at all 

monitored levels. The surface concentration values were expected to be the highest in the 

kitchen because of the most intensive indoor particulate sources. The surface concentrations 

determined in the other rooms reached the comparable values.  

The particles surface concentration was found to be decreased with the height of the room 

from the floor to the ceiling construction at wet gravitational settling in all monitored rooms 
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(Figure 2), as well as at dry gravitational settling (Figure 3). That means the lowest surface 

concentrations of particulates were measured at the height level of 2.2 m in all monitored 

rooms. 

 

 

Figure 2. Particles surface concentration versus height level at wet gravitational settling 

 

 

Figure 3. Particles surface concentration versus height level at dry gravitational settling 

Particles re-suspension effect was studied in real conditions without boundary conditions 

providing for any effect elimination. The particles release was expressed in percentage; the 

amount of particulates settled into water filled Petri dishes was represented by 100%.  
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The proportion of particles (re-suspended) released into the air after sedimentation settling 

was calculated as a difference between surface concentrations at both wet and dry settling 

for each height level and all monitored rooms [48]. The particles portions in relation to the 

height level in monitored rooms are illustrated in Figure 4.  

 

 
 

Figure 4. The particles portions in relation to the height level 

The values of re-suspension particles portions ranged from 45.6 to 58.7% in monitored 

rooms. The results of particles re-suspension effect were not consistent with our 

expectations. None trend of particles release in relation to the height level was confirmed 

(Figure 4). The wide differences in particle re-suspension portions were achieved at 

monitored height levels in studied rooms: from 35.8  to 64 % on the floor and from 56.8 

to 66.7 % at the height level of 2.2 m from the floor. The comparable portions for particles 

release was achieved only at the height level of 0.8 m from the floor (48.8, 45.0 and 45.7 

%).The average values of re-suspended particles portion in all monitored rooms are 

presented in Table 4. 

 

Room Re-suspended portion [%] 

Kitchen 51.69 

Living room 45.89 

Working room 58.77 

Table 4. The re-suspended portions of particulate matter in monitored rooms  
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The non-expected conclusion has resulted from comparison of the average values of 

resuspension portions in monitored rooms. The highest portions of released particles were 

found out in the working room with a minimum operating mode (minimum people 

activity). 

The mass concentrations of total suspended particulate matter (TSP) in studied rooms were 

detected in the range 59.028 to 114.583 μg.m-3; PM10 mass concentrations measured ranged 

from 31.94 to 55.56 μg.m3 (Table 5). Unlike settled particulate matter monitoring, the highest 

concentration of total suspended particles as well as PM10 fraction were measured in the 

living room.  

 

Room 
TSP 

[μg.m-3] 

PM10 

[μg.m-3] 
PM10/TSP 

Kitchen 80.556 48.611 0.60 

Living room 114.583 55.556 0.48 

Working room 59.028 31.944 0.54 

Table 5. Suspended particulate matter concentration 

The PM10 hygienic limit (50 μg.m-3) for indoor air in the Slovak Republic was exceeded in 

one measured room; the mean mass concentration detected was close to the limit. PM10 

concentration values reached about half of TSP concentration values (PM10/TSP ratio 0.48 for 

the living room, 0.60 for the kitchen and 0.54 for the working room).  

The similar mean concentration value of 63.3 μg m−3 monitored in 34 homes in Hong  

Kong has been reported in [25]. The lower indoor PM10 concentration levels were 

measured in Athens (mean values for all residences was 35.0 ± 10.7 g.m-3 during the 

warm period and 31.8 ± 7.8 g.m-3 during the cold period), presenting no exceedance 

above the 50 g.m-3 limit value [26]; whereas the authors in the study [27] referred much 

higher mean concentrations of 202 and 215 g.m-3 in poor Bangladeshi households. The 

very high PM10 levels were caused by using wood, dung and other biomass fuels for 

cooking.  

4. The morphology of settled and suspended particulate matter 

The morphology of settled as well as suspended particulate matter was investigated by 

electron scanning microscopy (SEM) with equipment Jeol JSM-35CF (Japan) at various 

extensions ranging from 90 to 5500. The scanning electron microscopy (SEM) micrographs 

represent the morphology of selected particles. As shown in Figures 5 to 9, the particles of 

irregular shapes and various sizes were observed in the sample of settled particulate 

matter. 
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Figure 5. Settled particulate matter morphology 

 

 
 

Figure 6. Settled particulate matter morphology 
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Figure 7. Detail of various shapes of settled particulate matter  

 

 
 

Figure 8. Detail of various shapes of settled particulate matter  
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The majority of particles are non-spherical in shape with strong division of the surface. The 

occurrence of spherical as well as fibrous particles was not obvious.  

 

Figure 9. PM10 particulate matter morphology 

Individual particles along with the aggregates of fine particles were observed in PM10 

suspended particulate matter (Figure 9). The evaluation of SEM micrographs of the total 

suspended particulate samples showed that 80 - 90 % of the particles are smaller than 10 m. 

In case of some samples, the particle size distribution was even shifted in the range of 

particle size under 5 m. As referred by authors in the Chinese study [24], the analysis of the 

settled dusts collected in typical resident buildings showed that the volume percent for the 

fine particles (particle size < 10.5 μm) of the settled dusts ranged from 26 % - 38 %. 

Seasonal variations and variations due to location were observed in both the morphological 

measurements and chemical analysis of settled dust collected inside the main foyers of three 

University buildings in Wolverhampton City Centre, U.K. [28]. 

5. The chemical composition of settled and suspended particulate matter 

The elemental EDX analyses were carried out on the micro-analytical system LINK AN 10 

000 operating in secondary mode at a potential 25 kV. The energy-dispersion X-ray system 

provided preliminary information on the elemental composition of the samples. The EDX 

spectra were very similar for majority of collected particulate matter samples. Principal 

inorganic elements constituting the particles calcium, silicon, aluminium, potassium,  

iron, chlorine, magnesium as well as titan and manganese were confirmed. The EDX 

spectrum in Figure 10 represents the elemental chemical composition of the settled 

particulate matter sample. 
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Figure 10. EDX spectrum of elemental chemical analysis of settled particulate matter  

The energy-dispersive X-ray system interfaced to the SEM provides preliminary information 

on the elemental composition of the samples. Figure 11 presents the EDX spectrum of the 

suspended particulate matter sample.  

In all samples discussed here, the EDX spectra were very similar for majority of collected 

particulate samples. The principal inorganic elements constituting the particles in order of 

peak intensity decreasing were Ca   Si  O   Al  C  Mg  Fe  Cl  Na  K. The presence 

of both carbon and oxygen, which can originate from organic compounds as well as from 

inorganic oxides, acids and/or salts, was confirmed [29].  

The elements observed by EDX were confirmed also by using X- ray fluorescence analysis 

(XRF). The total amount of inorganic elements (except for carbon, oxygen and other 

elements with proton number under 11) in settled particulate matter measured by XRF was 

found very low and was about 2.23 %. In [30] organic carbon and elemental carbon made up 

29 % and 2.5 % of the particulate matter, respectively. Water-soluble total carbon content in 

PM10 corresponds to 16% of the total particle masses measured in India. Organic matter is by 

far the major PM10 component besides mineral oxides. As observed in [31] major individual 

organic compounds quantified included series of alkanes, n-alkanoic acids, n-alkanals, 

alkan-2-ones and PAHs. Alkanes and ketones make up a significant fraction of particle-

phase organic compounds, ranging from C11 to C26, and C9 to C19, respectively. In addition, 

other organic compound classes have been identified, such as alkanols, esters, furans, 

lactones, amides, and nitriles [28]. The measured percentage content of measured elements 

is summarised in Table 6. 
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Figure 11. EDX spectrum of elemental chemical analysis of suspended particulate matter 

 

Element 
Minimum 

[%] 

Maximum 

[%] 

Mean 

[%] 

Aluminium 0.14 0.18 0.159 

Silicon 0.33 0.37 0.350 

Phosphorous 0.02 0.03 0.021 

Sulphur 0.30 0.31 0.306 

Chlorine 0.48 0.66 0.570 

Potassium 0.25 0.37 0.310 

Calcium 0.33 0.51 0.420 

Titane 0.02 0.03 0.025 

Cromium 0.01 0.01 0.010 

Manganese 0.004 0.006 0.005 

Iron 0.01 0.03 0.020 

Zinc 0.01 0.01 0.01 

Bromium 0.002 0.0007 0.0014 

Table 6. The percentage of basic inorganic elements measured by XRF in settled particulate matter 
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Chlorine, calcium, silicon, potassium and sulphur were found to be dominated; the 

concentrations of the other elements were quite lower as resulted from the quantitative XRF 

analysis (Table 6). The results of qualitative analysis by XRF correlated with those reported 

in [32]. The percentage of calcium and chromium measured by XRF is consistent with that 

measured by AAS (Table 9): 0.42 versus 0.43 % in case of calcium; 0.01 % by both XRF and 

AAS analysis in case of chromium. The XRF measured concentrations of iron and zinc were 

detected to be much lower than those detected by AAS (Table 9).  

The principal component analysis shows the existents of three associations of the elements 

in settling particles: a) lithogenic (As, Co, Cr, Fe, lantanides and Sc); b) biogenic (Sr and Ca); 

c) authigenic (U and Se). The average element enrichment factors were higher in the first 

period of settled particulate matter sampling from: Se (739)> Zn (523)> Cr(105)> Br(104)> 

Sb(97)> As (69) [33]. The As, Br, Cr, Sb, Se, Sr and U average concentrations in the settled 

particulate matter were measured higher than their average crustal abundances [33]. 

Qualitative estimation of various functional groups in particulate matter proceeded with 

Fourier transformed infrared analysis FTIR (Figure 12). 

 

Figure 12. FTIR spectrum of settled particulate matter 

Transmittances associated with particulate sulphate (near 618 and 1110 cm−1), ammonium 

(2900–3200, 1430 cm−1), hydroxyl (3200–3500 cm−1), aliphatic carbon (2920 and 2850 cm−1) and 

carbonyl (1650–1800 cm−1) functional groups were observed. FTIR also identified several 

organic functional groups, although specific organic molecules could not be identified. In 

addition, there was also noticed the presence of inorganic nitrate (835 cm−1) in [34]. 
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Absorbances associated with sulphate, nitrate, ammonium, aliphatic carbon-hydrogen, and 

carbonyl functional groups as main constituent of particulate matter were observed also in 

the FTIR spectra of diesel generated PM10 [35]. The mass concentrations of sulphate, nitrate, 

ammonium, organic carbon (OC), elemental carbon (EC) were primarily measured in [36] in 

small particulate matter of size 0.1–3.0 μm. 

The sum of Cl-, NO3- and SO42- concentrations represents a contribution of approximately 

24% to the total mass in ambient PM10 as noticed in [37]. Compared to outdoors, indoor PM 

contained more silicate (36% of particle number), organic (29%, probably originating from 

human skin), and Ca-carbonate particles (12%) [38]. Indoor PM10 was elevated, chemically 

different and toxicologically more active than outdoor PM10 [38]. Suspended and settled 

particulate matter sampled in the child’s bedroom was investigated in terms of mouse 

allergen in [39]. Airborne mouse allergen was detected in 48 of 57 (84%) bedrooms, and the 

median airborne mouse allergen concentration was 0.03 ng.m-3. The median PM10 

concentration was 48 mg.m-3 [39]. 

6. Metals content in suspended and settled particulate matter 

The presence of selected metals in particulate matter samples was detected by atomic 

absorption spectrometry (SpectrAA-30, Varian, Austrália). Fe, Zn, and Cu were detected by 

a standard process in acetylene – air flame, Cd, Cr, Ni, Pb and Co were detected in graphite 

cell in the GTA 96 add-on equipment. Arsenic content was detected by hydride method in 

the VGA 76 add-on equipment. 

Metals content was investigated in both settled and suspended particulate matter samples. 

Because of low quantity in the suspended particles samples, the metals concentrations were 

detected for TSP and PM10 filters all at once.  

The results of AAS analysis of selected metals content in settled and suspended aerosols for 

each monitored room are presented as metal concentrations in Tables 7 and 8. The average 

concentrations of metals measured in insufficient amount for individual concentration 

detection for each room are presented for arsenic, cadmium, chromium, nickel and lead.  

 

Metal Kitchen Living room Working room 

Calcium 0.64 1.46 2.06 

Copper 0.04 0.06 0.07 

Iron 2.56 1.78 4.73 

Magnesium 0.22 0.50 0.67 

Zinc 0.29 2.80 0.91 

 Average concentration

Arsenic 0.10

Cadmium 0.03

Chromium 0.04

Nickel 0.05

Lead 0.09

Table 7. Surface metal concentrations in settled particulate matter [μg.cm-2] 
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Metal Kitchen Living room Working room 

Calcium 2.16 2.47 1.56 

Copper 0.18 0.10 0.16 

Iron 0.14 0.51 1.71 

Magnesium 0.41 0.51 0.37 

Zinc 0.20 0.21 0.20 

 Average concentration 

Arsenic 0.28 

Cadmium 0.07 

Chromium 0.10 

Nickel 0.14 

Lead 0.24 

Table 8. Mass metal concentrations in suspended particulate matter [μg.m-3] 

The surface metal concentrations of settled particulate matter were detected in the range 

from 0.03 (cadmium) to 4.73 μg.cm-2 (iron). The high concentrations were measured also in 

case of calcium and zinc. The highest concentrations were measured in case of iron, calcium 

and zinc. There were no significant differences of metal surface concentrations found out in 

all measured rooms. The metal concentration of the other investigated metals (Cr, Ni, Pb, 

Cd, As) in settled particulate matter were close to the detection limit (Table 7). The 

significant high concentrations of cadmium, chromium, arsenic and lead as tobacco smoke 

emissions were not confirmed in settled particulate matter.  

The mass metal concentrations in suspended particulate matter range from 0.07 (cadmium) 

to 2.47 μg.m-3 (calcium). Similarly to settling PM metal concentrations, no significant 

differences were measured for the monitored rooms.  

The percentage of studied metals content was calculated in settled as well as suspended 

particulate matter as the ratio of measured metal concentration to the particulate matter 

concentration (Table 9). 

 

Metal Settled PM [%] Suspended PM [%] Suspended/ settled metals 

Arsenic 0.03 0.46 15.3 

Cadmium 0.01 0.11 11.0 

Chromium 0.01 0.17 17.0 

Nickel 0.02 0.23 11.5 

Lead 0.03 0.40 13.3 

Calcium 0.43 3.25 7.6 

Copper 0.02 0.26 13.0 

Iron 0.88 0.33 0.4 

Magnesium 0.14 0.68 4.9 

Zinc 1.50 0.34 0.2 

Table 9. The metals percentage content in settled and suspended particulate matter 
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The higher percentage of metals content was detected in suspended particulate matter in 

comparison to the settled particles. This finding may result from the fact that most of metals 

are cumulated in the finest fraction of aerosols [40] represented by suspended PM10 in this 

study. As reported in [41] Na, Al, Ca, Fe, Mg, Mn and Ti were found in coarse particles, 

while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se occured more in fine particles. In reference 

[44] there is noted that elements mostly concentrated in coarse mode including Al, Mg, Ca, 

Sc, Ti, Fe, Sr, Zr and Ba; elements mostly concentrated in accumulation mode including S, 

As, Se, Ag, Cd, Tl and Pb; and the elements having muti-mode distribution including Be, 

Na, K, Cr, Mn, Co, Ni, Cu, Zn, Ga, Mo, Sn and Sb. 

The measured values of metals content in suspended particulate matter were 4.9 – 15.3 times 

higher for all metals except for iron and zinc. The comparison of the percentage content of 

arsenic, cadmium, chromium, nickel and lead in settled and suspended indoor particulate 

matter is presented in Figure 13.  

 

 
 

Figure 13. The percentage content of metals in settled and suspended particulate matter 

The measured mass of metals contents in the samples of settled as well as suspended 

particulate were compared to the total mass of monitored particulate matter for each 

monitored room. Figures 14 and 15 represent the percentage content of metals in settled and 

suspended particulate matter for each monitored room, respectively.  
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Figure 14. The percentage content of metals in settled particulate matter for monitored rooms 
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Figure 15. The percentage content of metals in suspended particulate matter for monitored rooms 

The obtained mass concentrations of metals in indoor particle samples correspond with 

those in the typical urban aerosol [42,43]. The average indoor concentrations of total 
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elements were lower than or comparable to those measured outdoors, suggesting that 

indoor elements originated mainly from outdoor emission sources. On the contrary, the 

authors in [24] reported the metal elements concentrations analyzed were 3-15 times higher 

relative to soil background values in China. 

Anthropogenic sources include fossil fuel combustion, industrial metallurgical processes, 

vehicle emission and waste incinerations. Natural sources include a variety of processes 

acting on crustal minerals, such as volcanism, erosion and surface winds, as well as from 

forest fires and the oceans. Some elements are potentially toxic trace metals, such as Pb, Cd, 

V, Fe, Zn, Cr, Ni, Mn and Cu. 

7. Conclusion  

Particulate matter exposure that occurs indoors probably constitutes a significant fraction of the 

overall exposure to hazardous particles since typically people spend most time indoors. The 

indoor settled as well as suspended particulate matter was monitored and particles morphology 

and chemical composition with special regard to metal content investigation was performed.  

 Particles of irregular shapes and various sizes were observed in settled as well as 

suspended particulate matter. 

 Principal inorganic elements constituting the particulate matter such as calcium, silicon, 

aluminium, potassium, iron, chlorine, magnesium as well as titan and manganese was 

confirmed. The percentage of inorganic elements mentioned was detected very low in 

the range of 2.23 %. 

 Higher percentage of metals content was detected in suspended particulate matter in 

comparison to the settled particles except for iron and zinc. The measured values of 

metals content were 4.9 – 15.3 times higher in suspended particulate matter when 

comparing to the settled one. 

 There were found out no significant differences of metal surface concentrations in the 

measured rooms in spite of the various indoor particulate matter sources. 

The results demonstrate the complexity of indoor particulate matter nature affecting their 

surface properties. The results also emphasise the need for further research to a more 

complete understanding of the chemical nature of indoor particulate matter in connection 

with their surface reactivity. Due to the negative biological influence of particulate matters 

and their specific properties resulting in synergic effect of the other pollutants in the indoor 

air it is necessary to investigate the ways of indoor particulate matters occurrence 

minimization and/or elimination. 
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