263 research outputs found

    1FGL J1417.7-4407: A likely gamma-ray bright binary with a massive neutron star and a giant secondary

    Get PDF
    We present multiwavelength observations of the persistent Fermi-LAT unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 M_sun) and a ~ 0.35 M_sun giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H-alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk--magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma-ray to X-ray luminosity (~ 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.Comment: ApJL in pres

    Emerging evidence of plant domestication as a landscape-level process

    Get PDF
    Current theories of plant domestication are based on localized founder models in which single or multiple domestications occur as a progressive result of adaptation processes, but anomalies that do not fit within this perspective have been accumulating. We describe developments in archaeology and genetics over the past decade in which cultural connections between groups stretch back much further in time than was previously realized, and over wide geographic distances. Weak selection for domestication substantially pre-dates domestication and/or cultivation practices, large populations appear to have been maintained throughout the emergence of domesticates, and the resulting forms were not necessarily an improvement in terms of yield. We present a framework in which the process of domestication evolved as a landscape-level process involving large populations connected through sustained long-term human contact over large distances from which domesticate forms emerged in a complex manner as an adaptive reaction to long-term exploitation that did not necessarily provide immediate benefits. The landscape framework addresses several anomalies and radically changes the dynamic visualization of the evolution of domestication. It also opens up a list of new questions regarding the mechanisms of selection and the assembly of domestication syndrome alleles, and obliges a profound rethink of the progressive nature of domestication and human cultural evolution. The evidence from ancient crops over the past decade challenges some of our most basic assumptions about the process of domestication. The emergence of crops has been viewed as a technologically progressive process in which single or multiple localized populations adapt to human environments in response to cultivation. By contrast, new genetic and archaeological evidence reveals a slow process that involved large populations over wide areas with unexpectedly sustained cultural connections in deep time. We review evidence that calls for a new landscape framework of crop origins. Evolutionary processes operate across vast distances of landscape and time, and the origins of domesticates are complex. The domestication bottleneck is a redundant concept and the progressive nature of domestication is in doubt

    Domestication as innovation : the entanglement of techniques, technology and chance in the domestication of cereal crops

    Get PDF
    The origins of agriculture involved pathways of domestication in which human behaviours and plant genetic adaptations were entangled. These changes resulted in consequences that were unintended at the start of the process. This paper highlights some of the key innovations in human behaviours, such as soil preparation, harvesting and threshing, and how these were coupled with genetic ‘innovations’ within plant populations. We identify a number of ‘traps’ for early cultivators, including the needs for extra labour expenditure on crop-processing and soil fertility maintenance, but also linked gains in terms of potential crop yields. Compilations of quantitative data across a few different crops for the traits of nonshattering and seed size are discussed in terms of the apparently slow process of domestication, and parallels and differences between different regional pathways are identified. We highlight the need to bridge the gap between a Neolithic archaeobotanical focus on domestication and a focus of later periods on crop-processing activities and labour organization. In addition, archaeobotanical data provide a basis for rethinking previous assumptions about how plant genetic data should be related to the origins of agriculture and we contrast two alternative hypotheses: gradual evolution with low selection pressure versus metastable equilibrium that prolonged the persistence of ‘semi-domesticated’ populations. Our revised understanding of the innovations involved in plant domestication highlight the need for new approaches to collecting, modelling and integrating genetic data and archaeobotanical evidence

    Modeling biological age using blood biomarkers and physical measurements in Chinese adults

    Get PDF
    Background This study aimed to: 1) assess the associations of biological age acceleration based on Klemera and Doubal's method (KDM-AA) with long-term risk of all-cause mortality; and 2) compare the association of KDM-AA with all-cause mortality among participants potentially at different stages of the cardiovascular disease (CVD) continuum. Methods The present study was based on a subpopulation of the China Kadoorie Biobank, with baseline survey during 2004–08. A total of 12,377 participants free of ischemic heart disease, stroke, or cancer at baseline were included, in which 8180 participants were identified to develop major coronary event (MCE), ischemic stroke (IS), intracerebral hemorrhage (ICH) or subarachnoid hemorrhage (SAH), and 4197 remained free of these cardiovascular diseases before 1 January 2014. These participants were followed up until 1 Jan 2018. KDM-AA was calculated by regressing biological age measurement, which was constructed based on baseline 16 physical and 9 biochemical markers using Klemera and Doubal's method, on chronological age. We estimated the associations of KDM-AA with the mortality risk using the hazard ratio (HR) and 95% confidence interval (CI) from Cox proportional hazard models. We assessed discrimination performance by Harrell's C-index and net reclassification index (NRI). Findings The participants who developed MCE (mean KDM-AA = 0.1 year, standard deviation [SD] = 1.6 years) or ICH/SAH (0.3 ± 1.5 years) during subsequent follow-up showed accelerated aging at baseline compared to those of IS (0.0 ± 1.2 years) and control (−0.3 ± 1.3 years) groups. The KDM-AA was positively associated with long-term risk of all-cause mortality (HR = 1.20; 95% CI: 1.17, 1.23), and the association was robust for participants potentially at different stages of the CVD continuum. Adding KDM-AA improved mortality prediction compared to the model only with sociodemographic and lifestyle factors in whole participants, with the Harrell's C-index increasing from 0.813 (0.807, 0.819) to 0.821 (0.815, 0.826) (NRI = 0.011; 95% CI: 0.003, 0.019). Interpretation In this middle-aged and elderly Chinese population, the KDM-AA is a promising measurement for biological age, and can capture the difference in cardiovascular health and predict the risk of all-cause mortality over a decade. Funding This work was supported by National Natural Science Foundation of China (82192904, 82192901, 82192900, 81941018). The CKB baseline survey and the first re-survey were supported by a grant from the Kadoorie Charitable Foundation Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust (212946/Z/18/Z, 202922/Z/16/Z, 104085/Z/14/Z, 088158/Z/09/Z), grants (2016YFC0900500) from the National Key R&D Program of China, National Natural Science Foundation of China (81390540, 91846303), and Chinese Ministry of Science and Technology (2011BAI09B01)

    Geographic mosaics and changing rates of cereal domestication

    Get PDF
    Domestication is the process by which plants or animals evolved to fit a human-managed environment, and it is marked by innovations in plant morphology and anatomy that are in turn correlated with new human behaviours and technologies for harvesting, storage and field preparation. Archaeobotanical evidence has revealed that domestication was a protracted process taking thousands of plant generations. Within this protracted process there were changes in the selection pressures for domestication traits as well as variation across a geographic mosaic of wild and cultivated populations. Quantitative data allow us to estimate the changing selection coefficients for the evolution of non-shattering (domestic-type seed dispersal) in Asian rice (Oryza sativa L.), barley (Hordeum vulgare L.), emmer wheat (Triticum dicoccon (Shrank) Schübl.) and einkorn wheat (Triticum monococcum L.). These data indicate that selection coefficients tended to be low, but also that there were inflection points at which selection increased considerably. For rice, selection coefficients of the order of 0.001 prior to 5500 BC shifted to greater than 0.003 between 5000 and 4500 BC, before falling again as the domestication process ended 4000–3500 BC. In barley and the two wheats selection was strongest between 8500 and 7500 BC. The slow start of domestication may indicate that initial selection began in the Pleistocene glacial era

    A genome-wide association study based on the China Kadoorie Biobank identifies genetic associations between snoring and cardiometabolic traits

    Get PDF
    Despite the high prevalence of snoring in Asia, little is known about the genetic etiology of snoring and its causal relationships with cardiometabolic traits. Based on 100,626 Chinese individuals, a genome-wide association study on snoring was conducted. Four novel loci were identified for snoring traits mapped on SLC25A21, the intergenic region of WDR11 and FGFR, NAA25, ALDH2, and VTI1A, respectively. The novel loci highlighted the roles of structural abnormality of the upper airway and craniofacial region and dysfunction of metabolic and transport systems in the development of snoring. In the two-sample bi-directional Mendelian randomization analysis, higher body mass index, weight, and elevated blood pressure were causal for snoring, and a reverse causal effect was observed between snoring and diastolic blood pressure. Altogether, our results revealed the possible etiology of snoring in China and indicated that managing cardiometabolic health was essential to snoring prevention, and hypertension should be considered among snorers

    Reasons to Be Skeptical about Sentience and Pain in Fishes and Aquatic Invertebrates

    Get PDF
    The welfare of fishes and aquatic invertebrates is important, and several jurisdictions have included these taxa under welfare regulation in recent years. Regulation of welfare requires use of scientifically validated welfare criteria. This is why applying Mertonian skepticism toward claims for sentience and pain in fishes and aquatic invertebrates is scientifically sound and prudent, particularly when those claims are used to justify legislation regulating the welfare of these taxa. Enacting welfare legislation for these taxa without strong scientific evidence is a societal and political choice that risks creating scientific and interpretational problems as well as major policy challenges, including the potential to generate significant unintended consequences. In contrast, a more rigorous science-based approach to the welfare of aquatic organisms that is based on verified, validated and measurable endpoints is more likely to result in “win-win” scenarios that minimize the risk of unintended negative impacts for all stakeholders, including fish and aquatic invertebrates. The authors identify as supporters of animal welfare, and emphasize that this issue is not about choosing between welfare and no welfare for fish and aquatic invertebrates, but rather to ensure that important decisions about their welfare are based on scientifically robust evidence. These ten reasons are delivered in the spirit of organized skepticism to orient legislators, decision makers and the scientific community, and alert them to the need to maintain a high scientific evidential bar for any operational welfare indicators used for aquatic animals, particularly those mandated by legislation. Moving forward, maintaining the highest scientific standards is vitally important, in order to protect not only aquatic animal welfare, but also global food security and the welfare of humans
    corecore