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Emerging evidence of plant domestication as a

landscape-level process

Robin G. Allaby

The evidence from ancient crops over the past decade challenges some of our
most basic assumptions about the process of domestication. The emergence
of crops has been viewed as a technologically progressive process in which
single or multiple localized populations adapt to human environments in
response to cultivation. By contrast, new genetic and archaeological evidence
reveals a slow process that involved large populations over wide areas with
unexpectedly sustained cultural connections in deep time. We review evidence
that calls for a new landscape framework of crop origins. Evolutionary processes
operate across vast distances of landscape and time, and the origins of domes-
ticates are complex. The domestication bottleneck is a redundant concept and
the progressive nature of domestication is in doubt.

A re-evaluation of the assumptions of plant domestication

The evolution of domesticated (see Glossary) plants underpinning the rise of agriculture is
often seen as a pivotal moment in human progress, but the process was also associated
with the initial costs of malnutrition [1], disease [2], and labor traps that lock humans into
dependency on agriculture [3]. Consequently, the mechanisms and motivations that drove
the process remain unclear, and it is likely that aspects of the domestication paradigm frame-
work require some revision to accommodate the accumulation of paradoxes. In this context,
culture and biology are closely entwined — as research breakthroughs occur in one field,
the ramifications can run like shockwaves through the other to expose unconscious underlying
assumptions.

We are increasingly appreciating the complexities involved in the evolution of domestication
[4,5]. A decade ago saw a shift in thinking from simple single-localized crop origins to more
complex origins [6]. Recently, increasingly diverse disciplines have contributed evidence
highlighting the complexity of domestication. In parallel cases, domestication occurred
over vast but culturally connected distances, over long periods of time, and initially in pe-
riods long before early agriculture. This evidence resets the frame of the debate as emerging
data reveal that domestication does not fit with conventional visualizations of the process
(Figure 1). The consequences for the interpretation of cultural shifts are potentially profound,
and will require rethinking of how human societies evolved with so far underappreciated
levels of long-distance social interaction that allowed exchange of plant germplasm and
knowledge.

We detail below aspects of the plant domestication process that have come under revision
through emerging archaeogenomic and archaeobotanical evidence. We conclude that a
landscape perspective will be necessary, as visualized in Figure 2, to frame domestication
research in a way that incorporates current anomalies to the conventional view.
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Highlights

Current theories of plant domestication
are based on localized founder models
in which single or multiple domestica-
tions occur as a progressive result of
adaptation processes, but anomalies
that do not fit within this perspective
have been accumulating.

We describe developments in archaeol-
ogy and genetics over the past decade
in which cultural connections between
groups stretch back much further in
time than was previously realized, and
over wide geographic distances. Weak
selection for domestication substantially
pre-dates domestication and/or cultiva-
tion practices, large populations appear
to have been maintained throughout the
emergence of domesticates, and the
resulting forms were not necessarily an
improvement in terms of yield.

We present a framework in which the
process of domestication evolved as a
landscape-level process involving large
populations connected through sus-
tained long-term human contact over
large distances from which domesticate
forms emerged in a complex manner
as an adaptive reaction to long-term ex-
ploitation that did not necessarily provide
immediate benefits.

The landscape framework addresses
several anomalies and radically changes
the dynamic visualization of the evolution
of domestication. It also opens up a list of
new questions regarding the mecha-
nisms of selection and the assembly of
domestication syndrome alleles, and
obliges a profound rethink of the pro-
gressive nature of domestication and
human cultural evolution.
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The vast temporal window of selection for the domestication syndrome

The progression of domestication can be tracked from the archaeological record through obser-
vation of changes in the key visible traits of the domestication syndrome. These traits include
seed size and dispersal (shattering) in crops such as cereals. In many species seeds transition to
larger dimensions with the rise of domesticated forms [1,7]. Seed-shattering changes are evident
in abscission scar morphology where jagged forms indicate the threshing of Southwestern Asiatic
cereals (einkorn, Triticum monococcum; emmer, Triticum dicoccum; and barley, Hordeum
vulgare) and rice (Oryza sativa) in the Lower Yangtze [7-9], and fruit body remodeling in maize
(Zea mays) [10] and pearl millet (Pennisetum glaucum) [11]. The continuum of wild and derived
morphological characters that are underpinned genetically can be used to define the state of
the domestication process, and can indicate forms that are visibly domesticated.

Despite early expectations and views of domestication as a rapid process that involved strong
forces of artificial selection, the past 15 years have demonstrated a gradual transition to domes-
ticated forms over timeframes spanning millennia in a range of species. Archaeological remains of
Southwest Asian cereals document a transition of over 2000 years in decreased seed-shattering
and increasing seed size [7,12-14], with similar observations for rice in East Asia [8]. This same
pattern was observed for numerous crops in other world regions; these include sorghum
(Sorghum bicolor), common millet (Panicum miliaceum), pearl millet, pea (Pisum sativum), lentil
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Figure 1. The landscape framework of crop origins. The landscape framework differs from the conventional framework by operating at a larger temporal and
geographical scale into deep time through previously unappreciated pervasive cultural connections that greatly pre-date the onset of cultivation practices. The process
that leads to domestication is driven by so far unidentified selection pressures in deep time, resulting in resource changes that could necessitate reactive measures

such as cultivation to maintain food security.
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Figure 2. Visualization of a landscape-level process of domestication. The upper diagram shows the interaction between the changing distribution of
domestication syndrome alleles within for any given cereal population (A) under low-level exploitation and management, (B) at beginnings of domestication
(pre-domestication cultivation), (C) at the end of domestication (pre-domestication cultivation), and (D) in fully domesticated populations. The arrows indicate
genetic transfer between cereal populations in which increasing transfer of domestication syndrome alleles between populations through time takes place
predominately through human movement and exchange. The lower diagram shows the accumulation and interchange of domestication syndrome alleles for
several hypothetical populations over the time-period for the four stages above. The diagram shows variable speeds of accumulation of domestication
syndrome alleles through both internal selection and acquisition via genetic transfer between populations. Note the different starting points to domestication
and end points for any given population. For the cereals for which such periods has been measured using genetic and archaeobotanical data, time-frames
may be place on these divisions in terms of approximate start dates. For Western Asia, barley and wheat: (A) 25-20 kyr BP, (B) 12.5-11.5 kyr BP, (C) 10-9.5
kyr BP, and (D) 9.4-8 kyr BP. For Lower Yangtze rice: (A) ~14 kyr BP, (B) 9-6 kyr BP, (C) 7-6 kyr BP, and (D) 6-5.5 kyr BP.
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(Lens culinaris), soybean (Glycine max), chickpea (Cicer arietinum), Indian horsegram (Macrotyloma
uniflorum), sumpweed (lva annua), sunflower (Helianthus annus), squash (Cucurbita pepo), and
pitseed goosefoot (Chenopodium berlanderi) [11,15-19]. It has therefore become apparent that
the slow pace of the rise of domesticated morphologies is a general rather than an anomalous
observation. This raises a question of why strong selection does not generally appear to have
been involved in the evolution of domestication.

In addition to the inferred slow rise of domesticated forms, expansion of the archaeological evi-
dence allowed a second observation — that early domesticated forms were widely dispersed
and had no single epicenter for their emergence. This phenomenon is seen for all early crops in
the Fertile Crescent [12,15,20] and East Asia [21,22]. The slow evolution of domestication and
diffuse distribution of early forms highlights the importance of crop movement in which gene
flow between plant populations is a consequence of cultural interactions across the landscape.
To better understand this process at both the biological and cultural levels, we need to under-
stand the length of time over which domestication and the emergence of domesticated forms
occurred, and how wide a region was involved.

The strength of selection can be directly assessed from the archaeobotanical record by measur-
ing the change over time in the frequency of shattering and variance in seed size using the statis-
tical approaches of Haldane units and Darwin units. It was first established that, for the cereals
of Southwest Asia (einkorn, emmer, barley) and East Asia (rice), the selection coefficients for
both traits were very low, and, crucially, were comparable to those involved in natural selection
[23,24]. This observation was similarly found in a wider range of crops, including lentils, goose-
foot, mung-bean, sunflower, soybean, pea, and squash [15]. Such findings question the notion
that strong artificial selection associated with early domestication was a general principle, and
this has implications for the modes and mechanisms of selection involved.

Further dissection of the strength of selection established that selection pressures changed over
time [25]. Notably in the case of Southwest Asian cereals (einkorn, emmer, barley) a strong
increase in selection is associated with the development and increasing dominance of stone
sickle technologies [26]. Before the rise of sickles, selection for non-shattering was very weak,
but domestication syndrome traits were already at substantial frequencies in the range of 20—
30% before investment in sickle tools increased. This suggests that a weak source of selection
pressure pre-dated clear agricultural activities by many millennia. Backward extrapolation with
genetic models suggests that the onset of such weak selection pressures dates to as early as
20-25 thousand years ago (kyr BP) in Southwest Asia, and 14 kyr BP in East Asia for rice [25].
This evidence indicates that processes other than pre-agricultural cultivation played a role in
the initiation of the domestication trajectory which is likely rooted in changing human ecologies
impacting on wild plant populations during the late Pleistocene.

The late Pleistocene is increasingly recognized as a time of human transformation of ecosystems
through vegetation burning and the hunting of megafauna [27]. The period following the Last
Glacial Maximum, ~20 kyr BP, is associated with intensified foraging in China [28] and Southwest
Asia [29], possibly driven by overhunting and climatic amelioration [30-33]. During the
Epipalaeolithic in the Near East (24-11 kyr BP), increasingly complex microlithic toolkits
emerged, along with increased social communication revealed by long-distance exchange of
obsidian and seashells, and increased investment in settlement structures [34-36]. Similarly, cen-
tral places became established in the landscape in East Asia and new ceramic and microlithic
technologies arose during this same period [28,37]. A clear trend of increased exploitation of
wild grasses and cereals occurred throughout this period, occasionally culminating in aborted
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Glossary

Archaeogenomics: the study of
genomic evolution in real time through
the reconstruction of genomes of
archaeological samples from ancient
DNA.

Competitive selection: a form of
frequency-dependent selection in which
the selective disadvantage of the wild
type is a function of the frequency of the
adaptive mutant such that selection
can be initially weak but becomes
increasingly intense over time.

Darwin unit: a measure of rate of
phenotypic change defined as the
logarithmic change in the mean value of
a trait per million years.
Domestication: the process of
adaptation of plants and animals to the
human environment, usually to the
mutual benefit of both.

Domestication syndrome: a set of
traits that are often associated with
domestication, although not all are
always present. These include changes
in seed size, seed dispersal, plant
architecture, seasonal habit, dormancy,
environmental sensitivity such as
vemalization, and toxin content.
Environmental selection: a class of
selection model in which the selective
disadvantage of the wild type is
determined by a change in the
environment, leading to a genetic load.
Epipalaeolithic: an archaeological
period of hunter-gatherer-fisher
economies at the end of the Pleistocene,
characterized by microlithic stone tools
and wood and bone points, and that is
inferred to represent innovations
including harpoons and bow and arrow.
In Southwest Asia this is placed between
24 kyr BP and 11.5 kyr BP.

Genetic drift: the random change in
allele frequency taking place in each
generation, the strength and rate of
which is inversely related to population
size.

Genetic load: the general reduction in
fitness in a population relative to an
adapted type. Genetic load can be
generated in multiple ways including
through mutation load or a general
change in environmental conditions.
Haldane unit: a measure of rate of
phenotypic change, defined as the
fraction of a standard deviation change
per generation.

Labor trap: an activity that, once
undertaken, commits an individual to
that activity to the exclusion of others.
The onset of agriculture is associated
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cultivation regimes [38,39]. How those activities relate to mechanisms of selection is currently a
matter of conjecture, but they may account for persistent, weak selection for traits that later
were adaptive for domestication.

Agency and the mode and strength of selection — was it necessarily 'progress'?
Two key aspects of domestication concern the role of human agency and the adaptive potential
of plants undergoing domestication. A disparity has developed here between the biological and
archaeological sciences. Domestication theories in archaeology have evolved over the past cen-
tury from a standpoint of a high degree of consciousness and human agency [40,41] to one of
unconsciousness as archaeologists increasingly viewed domestication as an emergent ecologi-
cal process in which plants adapted to the human environment [4,42]. In this instance, con-
sciousness pertains to selective breeding carried out by proto-agriculturalists that led to the
rise of domesticated forms, a view that is still supported in some biological quarters [43]. Most do-
mestication researchers now recognize the teleological paradox that conscious initial domestica-
tion engenders: proto-agriculturalists would need to recognize traits and predict the complex
consequences of breeding before having ever achieved it. It further requires an ability to identify
very low frequencies of extremely subtle differences between plants, a scenario that most find un-
convincing. However, the notion of selective breeding has deep roots in biological thought. Dar-
win first used it to demonstrate the principal of natural selection [44], although he attributed the
domestication process itself to unintentional selection biases [45]. Later it was invoked in the
guise of truncation selection as a possible general mode of selection [46]. The latter was iden-
tified as a highly efficient mechanism of selection that largely avoids the selection costs caused by
genetic load under conventional environmental selection models (Box 1) [48,49]. Although
truncation selection operates in selective breeding, it is questionable whether the ranking and
truncation it requires (Box 1) could occur in nature [48], and, given the lack of natural empirical
examples, it is likely to be vanishingly rare if it exists at all.

An assumption of a selective breeding approach by incipient farmers brings with it a suite of
cultural assumptions about the intentionality and mode of selection [43]. These include conscious
ranking of plants by trait value so as to apply the selective truncation process because no known cul-
tivation mechanism could achieve this unconsciously.. These assumptions run contrary to half a

Box 1. Models of selection

¢? CellPress

with labor traps of increased labor
expenditure on crop processing and soil
maintenance, in particular as crops
themselves adapt to the tillage
environment and become dependent on
human intervention for survival.
Mutation load: that part of the genetic
load which is described by deleterious
mutations which purifying selection
removes over time. However, under
conditions of small population size in
which genetic drift becomes more
powerful than selection, mutation load
accumulates as new deleterious
mutations become randomly
incorporated into the population.
Selection coefficient: the difference in
fitness between the ideal adapted type
and the type to which selection is being
applied.

Substitution load: that part of the
genetic load which is described by the
difference in fitness between an ideal
adapted state and the current state. The
consequence of the substitution load is
that not all individuals will be
reproductively successful, consequently
population declines are associated with
selective episodes owing to the
substitution load.

Truncation selection: a process by
which all individuals below a given
threshold value of a trait are eliminated
from further reproduction.

Selection models are invoked to describe mechanisms of selection that remove less-fit individuals. Many models apply Haldane's original approach [47] of environmental
degradation (Figure |A) in which an environmental factor challenges the population such that the majority is suddenly at a selective disadvantage, and a genetic load is
therefore imposed. Mutations that overcome the challenge rise in frequency while wild types have a probability of extinction that is expressed by the magnitude of the
selection coefficient (S in Figure ). The resulting reduction in population size during selection is the substitution load. Strong selection can rapidly lead to the demise of the
population, and numerous simultaneous adaptive challenges rapidly bring maximum possible selection strengths to nearly neutral levels [54] even when multiple adap-
tive solutions are available, an initial criticism of Haldane’s approach [55-57]. The standard stabilizing selection model is a subset of environmental selection that is often
applied to complex traits [65]. This model accounts for the increasing fitness of individuals as numerous loci involved in a single adaptive challenge gain adaptive alleles.
Here the strength of selection necessarily diminishes as individuals approach the fitness threshold, and hence will always behave as stabilizing selection.

Selective breeding works through the alternative mechanism of truncation selection (Figure IB) in which individuals are ranked by fitness with respect to a particular trait,
and again a fitness threshold is imposed [46]. In contrast to Haldane's selection, all individuals below the threshold are removed, and all individuals above are retained.
Because the fitness threshold can be placed in a way that predictably splits the population, such as retaining the top half while discarding the lower half, the extent to
which the population is reduced can be controlled and the problem of the substitution load becoming excessive is overcome [48].

Athird class of selection model differs from Haldane'’s original system in that the strength of selection is a dynamic function of individuals of the population rather than the
environment. These often work by frequency- or density-dependency. One such example is competitive selection [68] (Figure IC). Here an advantage is gained by a
mutant in resource acquisition. This increase in resource acquisition elicits a burden shared by the remainder of the population. As more advantaged
individuals appear, resource becomes rarer for the wild type, thus intensifying their selective removal, and the excess resource diminishes with increasing competition
between advantaged individuals until the population returns to its original state.
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century of archaeological thought, and do not appear to be borne out by the direct evidence of slow,
weak selection over millennia that is apparent in the archaeological record [7,9,15,24]. A scenario in
which plants adapted to the human environment without a truncation selection-based mechanism
opens up several questions about the mechanism, the number of adaptations, and the loci involved
[50,51], as well as the selection limits, the associated strength of selection, and the general detectabil-
ity of soft versus hard selective sweeps [52,53]. Simple application of Haldanian environmental selec-
tion suggest that load restrictions under mounting adaptive challenges lead to weak selection [54].
This is in agreement with models that do not account for selection cost, but account for the additive
effects of quantitative trait loci [58,59]. Such models describe relatively simply controlled
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phenotypes, such as shattering loss, and also have been found to describe the short-term dynam-
ics of directional selection in more complex systems sufficiently well to be usefully informative [60].
This use of models to test the stress of the substitution load on populations is informative about
the possible causes of repeated agricultural collapse where environmental selective challenges
could have been too numerous during agricultural expansion [61-64].

Many crop traits are under complex control following a pattern of stabilizing selection [65] (Box 1).
Such models focus on indirect selection at loci through additive effects on the phenotype, leading
to a general expectation that alleles of small effect react to shifts in environmental conditions
[68,59,66]. These are broadly in agreement with the theoretical expectation of weak selection at
the locus level, and it has been noted that strong selection over numerous adaptive challenges in-
duces inhibitive population bottlenecks at levels comparable to the simple Haldanian models [67].

In the absence of selective breeding mechanisms of truncation selection, theoretical biological
expectations of selection and archaeological data are largely reconciled to a scenario of weak
selection over long time-periods. This opens up the debate about the mechanisms of selection
involved. Archaeological data indicate that different selective mechanisms were likely in play over
time in the case of shattering loss [25]. Conversely, the complex trait of seed size shows trends
that would be unexpected under the standard stabilizing selection model. Instead of the expected
reduction in selection intensity over time as size shifts to new optima and the trait becomes
restabilized, an anomalous intensification of selection is observed. This observation could possibly
be explained by competition. Seedling competition has been suggested as a mechanism for
increases in seed size based on archaeological data [17,69,70], and a similar conclusion was
recently reached from examining competition between seedlings of different wild progenitor
species in disturbed human environments [71]. One intuitive expectation of competition is that, as
more effective competitors prevail, diminishing resource availability will intensify the removal of the
less competitive. A novel class of selection model that works by competitive selection between
plants (Box 1) confirms this expectation of periods of intensification of selection, and these appear
to explain well the observed archaeological trends [68]. Crucially, larger-seeded crops do not neces-
sarily translate to a higher yield [72], casting doubt on the general interpretation that the rise of
increased seed size represents a progressive beneficial trait for humans. Together, this leads to a
picture in which plant groups adapt to the human environment independently of humans, and
these groups do not necessarily represent the most nutritionally important plants for humans.

Increasingly, the first opportunity for adaptation is ascribed to plants in the niches produced by
human activity. Translated to the cultural landscape, the conventional view of a progression
that is beneficial in terms of improving food security is questionable. The current evidence is
beginning to suggest an exploited resource that changes slowly over long time-periods in
response to exploitation and other disturbance in ways that may not always have been welcome
or immediately beneficial.

The redundancy of a domestication bottleneck concept

The domestication bottleneck involves a contraction and recovery in census population size that
both reduces genetic diversity and causes an increase in mutation load through the strong
effects of genetic drift [73]. It has been a fundamental component of paradigms of domesticated
species origins which envisage proto-farmers retrieving wild plants for cultivation which ultimately
evolved into domesticated forms.

The emerging picture of the evolution of domestication as a very slow process that was initiated
long before the rise of cultivation makes the notion of a classical bottleneck at the onset of
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domestication both unnecessary and unlikely. A reduction in population size that is sufficient to
raise the strength of drift sufficiently to override purifying selection and increase the mutation
load would similarly be expected to override weak selection. Consequently, the domestication
bottleneck concept appears to be incompatible with the observed weak selection in the archaeo-
logical record. Direct archaesogenomic examination of genetic diversity during domestication
(barley, maize, wheat, sorghum, and beans [74-82]) consistently do not show a loss of genetic
diversity associated with the domestication bottleneck. Mutation load was found to be
attributable mostly to processes after the domestication bottleneck [75,81]. These findings from
archaeogenomics reverberate with observations of einkorn [83] and barley [84] in which heterozy-
gosity differs little between wild and domesticated forms. Alternative approaches using coalescent
models to reconstruct past population histories [85,86] have shown trends consistent with very
long-term declines in population size over tens of thousands of years, and that vastly pre-date
the rise of domesticated forms or the presence of humans [87,88]. Bottlenecks inferred
from troughs in population size have both coincided [88] and missed [87] the expected time of
domestication. These long-term trends could possibly reflect unknown ecological processes,
but have also been demonstrated to be an artefactual product of subdivided wild metapopulation
structures [89)].

Taken together, these data have led to the suggestion that large populations were likely to have
been involved in the process of domestication [90]. Importantly, a general reduction of genetic
diversity of domesticate relative to wild progenitor species is not sufficient to infer a domestication
bottleneck without knowing the diversity of the wild population substructure, the relative contribu-
tions of subpopulations to the domestication gene pool, and the timing of diversity reduction [90].
The domestication bottleneck concept is still often held as an obvious necessity to explain how
proto-farmers subsumed a fraction of wild species into their regimes of cultivation, and debate
is likely to continue for some time on this topic. Over the past decade the severity of the bottleneck
invoked has been progressively downgraded [91], and is an increasingly redundant concept in a
framework in which crops bear the signatures of emergence from large meta-populations under
long-term weak selection.

The slow and complex emergence of domesticates

Conventionally, crop origins have been sought in terms of specific places in a localized visualiza-
tion of the process. This fits comfortably within the rapid transition model where a fast rise of do-
mesticates occurred in response to artificial selection pressures under a high degree of
localized human agency (e.g., [92]). This scenario implies a lack of human communication
between regional centers and associated geneflow. Persistent expectations of a place for
human agency in the evolution of domestication under a protracted model [93] are met by
evidence in archaeological data which runs counter to the localized model. Regular trade
millennia before agriculture, extending back into the Epipalaeolithic (>20 kyr BP), has been
revealed in commodities such as obsidian and seashells that demonstrate sophisticated long-
range networks capable of facilitating geneflow [34,37,94]. Reflecting this, crops such as barley
[95] and emmer wheat [96] show genetic affiliation across the wild biogeographic range, including
similarities to divergent wild ecotypes.

Several crops clearly show independent domestication trajectories in different regions, including
beans in the Andes and Meso-America [97], Chenopodium in the Andes, Mesoamerica, and
eastern North America [98], and squashes (Cucurbita spp.) from several localities throughout
the American continents [99]. Even within regions parallel domestications for beans [100], chili
peppers [101], and, over a wider geographical range, emmer wheat [102] have occurred. To fit
such patterns of genetic diversity within the conventional framework requires attribution to
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post-domestication introgression [92,103], but still requires strong selection signals and lowered
genetic diversity during domestication which are not borne out by the data [15,25]. However, it is
also the case that introgressive processes underlie post-domestication adaptation to altitude
[104] and latitude [105].

A key issue is whether domestication syndrome alleles were assembled centrally before
dispersal, or alternatively emerged during extensive geneflow across the wild progenitor range.
This is a challenging knot to unravel under a system of decentralized long-term extensive
geneflow and weak selection. In the case of maize, analysis of the soft selection of domestication
syndrome alleles from wild standing variation demonstrates that different waves of semi-
domesticated maize dispersed from the Mesoamerican range, and show different biases in
teosinte background, and thus variant processes of syndrome fixation [75]. In this case maize
origins resulted from multiple extractions over time from the region of origin against a background
of extensive geneflow across wild teosinte populations.

Overall a picture is emerging for the slow emergence of crops at a regional scale in which exten-
sive processes of geneflow occurred. As genomic tools improve, more of these subtle and
complex trajectories are likely to be uncovered.

Concluding remarks

The strands explored here, that are represented in the framework progression of Figure 1, bring
together the emergent evidence of the past decade of a protracted time-frame of domestication
involving complex processes and weak selection pressures that stretch beyond a direct progres-
sive switch to domesticated forms. The landscape framework visualized in Figure 2 is a funda-
mentally different model in both mechanism and interpretation of the evolution of domestication
than has been discussed across disciplines in the past. The involvement of large populations
over wide areas actively connected through human agency mediated geneflow, from which a
spectrum of development of domesticated forms emerged pluralistically, frames a model that
operates at the landscape level. The framework outlined in Figure 1 erases paradoxes that
have accumulated in the domestication paradigm, and presents a series of new avenues of inves-
tigation (see Outstanding questions). Radically, a general assumption that the evolutionary
changes seen in plants in response to their exploitation were universally beneficial or welcome
to humans is no longer necessary in all cases. This is a fundamental departure from the notion
of attributing origins to a specific locality and advantaged cultural group, and the implications
may be far-reaching and make a fruitful area of investigation in the coming decade. The high
level of crop diversity involved will encourage a rethink about the plasticity and adaptability of
crops and their robustness to adaptive challenges [61,62,64,69]. The framework supports a
potential range of mechanisms to be explored to understand the role of agricultural weeds and
their entry into the food chain as a part of the same extended system rather than as exceptional
oddities [70,106]. Establishing the extent to which human communication across landscapes
elevated geneflow between crops above wild levels, in unison with the growing recognition of
early human cultural connectedness that stretches to the Epipalaeolithic, has the potential to
profoundly impact on our understanding of early cultures, the role of human agency, and the
mechanisms by which the process of domestication arises.
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Outstanding questions

What were the mechanisms that actually
initiated selection for domestication
syndrome traits?

How widespread is the lack of the
hallmarks of the domestication
bottleneck among crops?

Were domestication syndrome alleles
assembled before or after dispersal of
early cultivars?

What is the relationship between deep-
time human networks and wild crop
progenitor gene flow?

Are weeds that transitioned into food
sources part of the same framework?

Could domestication have evolved in
the absence of long-term human
contact between groups?

How does long-term sustained
contact revise our understanding of
human cultural evolution?
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