1,480 research outputs found
A Feasibility Study in Measuring Soft Tissue Artifacts on the Upper Leg Using Inertial and Magnetic Sensors
Soft-tissue artifacts cause inaccurate estimates of body segment orientations. The inertial sensor (or optical marker) is orientating (or displacing) with respect to the bone it has to measure, due to muscle and skin movement [1]. In this pilot study 11 inertial and magnetic sensors (MTw, Xsens Technologies) were placed on the rectus femoris, vastus medialis and vastus lateralis (upper leg). One sensor was positioned on the tendon plate behind the quadriceps (iliotibial tract, as used in Xsens MVN [1]) and used as reference sensor. Walking, active and passive knee extensions and muscle contractions without flexion/extension were recorded using one subject. The orientation of each sensor with respect to the reference sensor was calculated. During walking, relative orientations of up to 28.6º were measured (22.4±3.6º). During muscle contractions without flexion/extension the largest relative orientations were measured on the rectus femoris (up to 11.1º) [2]. This pilot showed that the ambulatory measurement of deformation of the upper leg is feasible; however, improving the measurement technology is required. We therefore have designed a new inertial and magnetic sensor system containing smaller sensors, based on the design of an instrumented glove for the assessment of hand kinematics [3]. This new sensor system will then be used to investigate soft-tissue artifacts more accurately; in particular we will focus on in-use estimation and elimination of these artifacts
Nonconservative Lagrangian mechanics II: purely causal equations of motion
This work builds on the Volterra series formalism presented in [D. W.
Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model
nonconservative systems. Here we treat Lagrangians and actions as `time
dependent' Volterra series. We present a new family of kernels to be used in
these Volterra series that allow us to derive a single retarded equation of
motion using a variational principle
Tiresias: Predicting Security Events Through Deep Learning
With the increased complexity of modern computer attacks, there is a need for
defenders not only to detect malicious activity as it happens, but also to
predict the specific steps that will be taken by an adversary when performing
an attack. However this is still an open research problem, and previous
research in predicting malicious events only looked at binary outcomes (e.g.,
whether an attack would happen or not), but not at the specific steps that an
attacker would undertake. To fill this gap we present Tiresias, a system that
leverages Recurrent Neural Networks (RNNs) to predict future events on a
machine, based on previous observations. We test Tiresias on a dataset of 3.4
billion security events collected from a commercial intrusion prevention
system, and show that our approach is effective in predicting the next event
that will occur on a machine with a precision of up to 0.93. We also show that
the models learned by Tiresias are reasonably stable over time, and provide a
mechanism that can identify sudden drops in precision and trigger a retraining
of the system. Finally, we show that the long-term memory typical of RNNs is
key in performing event prediction, rendering simpler methods not up to the
task
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years
Metal-free photoanodes for C–H functionalization
Organic semiconductors, such as carbon nitride, when employed as powders, show attractive photocatalytic properties, but their photoelectrochemical performance suffers from low charge transport capability, charge carrier recombination, and self-oxidation. High film-substrate affinity and well-designed heterojunction structures may address these issues, achieved through advanced film generation techniques. Here, we introduce a spin coating pretreatment of a conductive substrate with a multipurpose polymer and a supramolecular precursor, followed by chemical vapor deposition for the synthesis of dual-layer carbon nitride photoelectrodes. These photoelectrodes are composed of a porous microtubular top layer and an interlayer between the porous film and the conductive substrate. The polymer improves the polymerization degree of carbon nitride and introduces C-C bonds to increase its electrical conductivity. These carbon nitride photoelectrodes exhibit state-of-the-art photoelectrochemical performance and achieve high yield in C-H functionalization. This carbon nitride photoelectrode synthesis strategy may be readily adapted to other reported processes to optimize their performance
In situ data collection and structure refinement from microcapillary protein crystallization
In situ X-ray data collection has the potential to eliminate the challenging task of mounting and cryocooling often fragile protein crystals, reducing a major bottleneck in the structure determination process. An apparatus used to grow protein crystals in capillaries and to compare the background X-ray scattering of the components, including thin-walled glass capillaries against Teflon, and various fluorocarbon oils against each other, is described. Using thaumatin as a test case at 1.8 angstrom resolution, this study demonstrates that high-resolution electron density maps and refined models can be obtained from in situ diffraction of crystals grown in microcapillaries
Time-Controlled Microfluidic Seeding in nL-Volume Droplets To Separate Nucleation and Growth Stages of Protein Crystallization
This paper describes a method of time-controlled seeding to separate the stages of nucleation and growth in protein crystallization using a microfluidic device
Patient Experiences With Family Planning in Community Health Centers
Women of childbearing age represent one of the single largest groups of community health center patients, and family planning plays a critical role in the health, economic, and social circumstances of women, their children, and families. Family planning is a required service at all health centers, and the major expansion of health centers under the Affordable Care Act means that for low-income women of reproductive age this service should be increasingly available. The Quality Family Planning (QFP) Guidelines, jointly developed by the Centers for Disease Control and Prevention (CDC) and the Office of Population Affairs (OPA) and released in 2014, provide a new opportunity to strengthen family planning service delivery for all patients of reproductive age.1 But limited and somewhat dated information exists regarding both patients’ experiences receiving primary care at health centers generally, and women’s experiences with family planning care at health centers specifically. 2 , 3 With patient-centeredness playing an increasingly central role in quality improvement efforts, information regarding the importance placed on family planning services by patients and their experiences receiving care becomes ke
- …