13,042 research outputs found

    Neutron scattering measurements of phonons in nickel at elevated temperatures

    Get PDF
    Measurements of elastic and inelastic neutron scatterings from elemental nickel were made at 10, 300, 575, 875, and 1275 K. The phonon densities of states (DOSs) were calculated from the inelastic scattering and were fit with Born–von Kármán models of the lattice dynamics. With ancillary data on thermal expansion and elastic moduli, we found a small, negative anharmonic contribution to the phonon entropy at high temperature. We used this to place bounds on the magnetic entropy of nickel. A significant broadening of the phonon DOS at elevated temperatures, another indication of anharmonicity, was also measured and quantified

    Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Get PDF
    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 – 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance

    Open-mindedness can decrease persuasion amongst adolescents: The role of self-affirmation

    Get PDF
    Objectives Self-affirmation (e.g., by reflecting on important personal values) has been found to promote more open-minded appraisal of threatening health messages in at-risk adults. However, it is unclear how self-affirmation affects adolescents and whether it has differential effects on the impact of these messages amongst those at relatively lower and higher risk. The current study explored moderation by risk. Design Participants were randomly assigned to either a self-affirmation or a control condition before receiving a health message concerning physical activity. Methods Older adolescents (N = 125) completed a self-affirmation or control writing task before reading about the health consequences of not meeting recommendations to be physically active for at least 60 min daily. Most of the sample did not achieve these levels of activity (98%, N = 123). Consequently, the message informed these participants that – unless they changed their behaviour – they would be at higher risk of heart disease. Participants completed measures of responses to the message and behaviour-specific cognitions (e.g., self-efficacy) for meeting the recommendations. Results For relatively inactive participants, self-affirmation was associated with increased persuasion. However, for those who were moderately active (but not meeting recommendations), those in the self-affirmation condition were less persuaded by the message. Conclusions Whilst self-affirmation can increase message acceptance, there are circumstances when the open-mindedness it induces may decrease persuasion. The evidence provided in this study suggests that caution may be needed when recommendations are challenging and it could be considered reasonable to be sceptical about the need to change behaviour

    Putting knowledge to work

    Get PDF

    Teleconnections in STEAM: Antarctic Field-Camp Art

    Get PDF
    We describe a component of a multi-element STEAM collaboration looking to explore ideas around the life cycle of Antarctic sea ice. One of the intermediate phases of the work involved the scientist deploying partially pre-made art components. Results were modulated by weather and operational constraints and generated a sequence of images and recordings as well as greater understanding of the creative collaboration process

    Effect of the Coriolis Force on the Hydrodynamics of Colliding Wind Binaries

    Get PDF
    Using fully three-dimensional hydrodynamic simulations, we investigate the effect of the Coriolis force on the hydrodynamic and observable properties of colliding wind binary systems. To make the calculations tractable, we assume adiabatic, constant velocity winds. The neglect of radiative driving, gravitational deceleration, and cooling limit the application of our models to real systems. However, these assumptions allow us to isolate the effect of the Coriolis force, and by simplifying the calculations, allow us to use a higher resolution (up to 640^3) and to conduct a larger survey of parameter space. We study the dynamics of collidng winds with equal mass loss rates and velocities emanating from equal mass stars on circular orbits, with a range of values for the ratio of the wind to orbital velocity. We also study the dynamics of winds from stars on elliptical orbits and with unequal strength winds. Orbital motion of the stars sweeps the shocked wind gas into an Archimedean spiral, with asymmetric shock strengths and therefore unequal postshock temperatures and densities in the leading and trailing edges of the spiral. We observe the Kelvin-Helmholtz instability at the contact surface between the shocked winds in systems with orbital motion even when the winds are identical. The change in shock strengths caused by orbital motion increases the volume of X-ray emitting post-shock gas with T > 0.59 keV by 63% for a typical system as the ratio of wind velocity to orbital velocity decreases to V_w/V_o = 2.5. This causes increased free-free emission from systems with shorter orbital periods and an altered time-dependence of the wind attenuation. We comment on the importance of the effects of orbital motion on the observable properties of colliding wind binaries.Comment: 12 pages, 17 figures, accepted for publication in Ap

    Ecological Studies of Wolves on Isle Royale, 1979-1980

    Get PDF
    Annual Report 1979-1980 (Covering the twenty-second year of research)https://digitalcommons.mtu.edu/wolf-annualreports/1041/thumbnail.jp

    GaAs-based Self-Aligned Stripe Superluminescent Diodes Processed Normal to the Cleaved Facet

    Get PDF
    We demonstrate GaAs-based superluminescent diodes (SLDs) incorporating a window-like back facet in a self-aligned stripe. SLDs are realised with low spectral modulation depth (SMD) at high power spectral density, without application of anti-reflection coatings. Such application of a window-like facet reduces effective facet reflectivity in a broadband manner. We demonstrate 30mW output power in a narrow bandwidth with only 5% SMD, outline the design criteria for high power and low SMD, and describe the deviation from a linear dependence of SMD on output power as a result of Joule heating in SLDs under continuous wave current injection. Furthermore, SLDs processed normal to the facet demonstrate output powers as high as 20mW, offering improvements in beam quality, ease of packaging and use of real estate. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    • …
    corecore