337 research outputs found

    Imaging genome abnormalities in cancer research

    Get PDF
    Increasing attention is focusing on chromosomal and genome structure in cancer research due to the fact that genomic instability plays a principal role in cancer initiation, progression and response to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and functional aspects) of normal and cancer cells can be monitored with direct visualization by using a variety of cutting edge molecular cytogenetic technologies that are now available in the field of cancer research. Examples are presented in this review by grouping these methodologies into four categories visualizing different yet closely related major levels of genome structures. An integrated discussion is also presented on several ongoing projects involving the illustration of mitotic and meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of chromosomal aberration capable of monitoring condensation defects in cancer; the establishment of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor genomic instability; and the characterization of apoptosis related chromosomal fragmentations caused by drug treatments

    Janus: Launch of a NASA SmallSat Mission to Near-Earth Binary Asteroids

    Get PDF
    Janus is a two-spacecraft SmallSat mission to fly by two different pairs of binary near Earth asteroids, (175706) 1996 FG3 and (35107) 1991 VH. The two identical Janus spacecraft are scheduled to launch during a launch period opening 1 August 2022 as secondary payloads with the NASA Psyche mission, on a SpaceX Falcon Heavy launch vehicle. Janus is led by principal investigator Dr. Dan Scheeres at the University of Colorado Boulder and managed, built, and operated by Lockheed Martin. These planetary SmallSats share many deep space challenges similar to larger missions: Janus must execute deep space maneuvers to achieve hundreds of meters per second ΔV to reach its destinations, close a telecommunication link at ranges up to 2.4 AU, autonomously manage a several-month-long telecommunications blackout during solar conjunction, operate at a maximum Sun range of 1.62 AU, and survive for approximately four years in interplanetary space before encountering their target asteroids. During the encounters, the spacecraft will return high resolution visible and infra-red images of the asteroids. In getting Janus to the pad, the implementation team successfully managed an aggressive mission schedule despite COVID-19 related supply chain impacts and work environments, all while remaining on target for the SIMPLEx-2 cost cap. Janus is a pathfinder for achievable and affordable SmallSat science missions and demonstrates the valuable partnership between an experienced deep space mission engineering team, the SmallSat commercial component industry, and a forward- looking NASA model for Class-D science missions

    Seismicity on the western Greenland Ice Sheet : surface fracture in the vicinity of active moulins

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 1082–1106, doi:10.1002/2014JF003398.We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.Research by J. Carmichael was supported by a NASA NESSF Fellowship grant NNX08AU82H and NSF grant ANT-0424589. The fieldwork and additional analyses were supported by the National Science Foundation's Office of Polar Programs (NSF-OPP) through ARC-1023382, awarded to I. Joughin, and ARC-1023364, awarded to S. B. Das and M. D. Behn. Matt King is a recipient of an Australian Research Council Future Fellowship (project number FT110100207).2015-12-2

    Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation

    Get PDF
    Mitotic cell death is an important form of cell death, particularly in cancer. Chromosome fragmentation is a major form of mitotic cell death which is identifiable during common cytogenetic analysis by its unique phenotype of progressively degraded chromosomes. This morphology however, can appear similar to the morphology of premature chromosome condensation (PCC) and thus, PCC has been at times confused with chromosome fragmentation. In this analysis the phenomena of chromosome fragmentation and PCC are reviewed and their similarities and differences are discussed in order to facilitate differentiation of the similar morphologies. Furthermore, chromosome pulverization, which has been used almost synonymously with PCC, is re-examined. Interestingly, many past reports of chromosome pulverization are identified here as chromosome fragmentation and not PCC. These reports describe broad ranging mechanisms of pulverization induction and agree with recent evidence showing chromosome fragmentation is a cellular response to stress. Finally, biological aspects of chromosome fragmentation are discussed, including its application as one form of non-clonal chromosome aberration (NCCA), the driving force of cancer evolution

    Insights on processes of evolutionary tumor growth

    Get PDF
    Review on Insights on processes of evolutionary tumor growt

    KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Get PDF
    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V=10.7V = 10.7 star (TYC 8378-64-1), with Teff_{eff} = 5948±745948\pm74 K, logg\log{g} = 4.3190.030+0.0204.319_{-0.030}^{+0.020} and [Fe/H] = 0.090.10+0.110.09_{-0.10}^{+0.11}, an inferred mass M_{*} = 1.1120.061+0.0551.112_{-0.061}^{+0.055} M_{\odot} and radius R_{*} = 1.2090.035+0.0471.209_{-0.035}^{+0.047} R_{\odot}. The planet has a radius RP_{P} = 1.3990.049+0.0691.399_{-0.049}^{+0.069} RJ_{J} and mass MP_{P} = 0.6790.038+0.0390.679_{-0.038}^{+0.039} MJ_{J}. The planet has an eccentricity consistent with zero and a semi-major axis aa = 0.052500.00097+0.000860.05250_{-0.00097}^{+0.00086} AU. The best fitting linear ephemeris is T0T_{0} = 2457066.72045±\pm0.00027 BJDTDB_{TDB} and P = 4.1662739±\pm0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of Teq_{eq} = 137723+281377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.8170.054+0.0680.817_{-0.054}^{+0.068} ×\times 109^9 erg s1^{-1} cm2^{-2}, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b is unlikely to survive beyond the current subgiant phase, due to a concomitant in-spiral of the planet over the next \sim1 Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V << 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.Comment: 20 pages, 13 figures, 7 tables, accepted for publication in MNRA
    corecore