13 research outputs found

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Prevalence of Rickettsia species antibodies and Rickettsia species DNA in the blood of cats with and without fever

    No full text
    Rickettsia species antibodies have been detected in some cats but it is unknown whether infected cats develop clinical signs. The prevalence of Rickettsia species deoxyribonucleic acid (DNA) in blood from clinically ill cats has not been determined. The objective of this study was to determine if cats with fever (body temperature >= 102.5 degrees F [39.2 degrees C]) were more likely to have evidence of rickettsial infection than healthy, age-matched, control cats with a body temperature < 102.5 degrees F. Rickettsia species polymerase chain reaction (PCR) assays were performed to detect rickettsial DNA extracted from blood (71 paired samples), indirect immunofluorescence assays (IFA) were performed to detect serum antibodies against Rickettsia felis (90 paired samples) and Rickettsia rickettsii (91 paired samples), and the results between pairs were compared. All samples were negative for Rickettsia species DNA. More cats with fever were seropositive for R felis or R rickettsii than control cats, but results were not statistically significant. Results of this pilot study failed to show an association between Rickettsia species DNA or Rickettsia species antibodies and fever. (c) 2008 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.Center for Companion Animal Studies at Colorado State Universit
    corecore