291 research outputs found

    Nighttime chemistry at a high altitude site above Hong Kong

    Get PDF
    Nighttime reactions of nitrogen oxides influence ozone, volatile organic compounds, and aerosol and are thus important to the understanding of regional air quality. Despite large emissions and rapid recent growth of nitrogen oxide concentrations, there are few studies of nighttime chemistry in China. Here we present measurements of nighttime nitrogen oxides, NO3 and N2O5, from a coastal mountaintop site in Hong Kong adjacent to the megacities of the Pearl River Delta region. This is the first study of nighttime chemistry from a site within the residual layer in China. Key findings include the following. First, highly concentrated urban NOx outflow from the Pearl River Delta region was sampled infrequently at night, with N2O5 mixing ratios up to 8 ppbv (1 min average) or 12 ppbv (1 s average) in nighttime aged air masses. Second, the average N2O5 uptake coefficient was determined from a best fit to the available steady state lifetime data as γ(N2O5) = 0.014 ± 0.007. Although this determination is uncertain due to the difficulty of separating N2O5 losses from those of NO3, this value is in the range of previous residual layer determinations of N2O5 uptake coefficients in polluted air in North America. Third, there was a significant contribution of biogenic hydrocarbons to NO3 loss inferred from canister samples taken during daytime. Finally, daytime N2O5 mixing ratios were in accord with their predicted photochemical steady state. Heterogeneous uptake of N2O5 in fog is determined to be an important production mechanism for soluble nitrate, even during daytime. Key Points Large (up to 12 ppbv N2O5) but infrequent nocturnal NOx outflow from the Pearl River Delta Average N2O5 uptake coefficients 0.014 ± 0.007, in line with residual layer measurements in the U.S. Daytime N2O5 follows predicted steady state but rapidly produces soluble nitrate in fog.Department of Civil and Environmental Engineerin

    Notch activation is required for downregulation of HoxA3-dependent endothelial cell phenotype during blood formation.

    Get PDF
    Hemogenic endothelium (HE) undergoes endothelial-to-hematopoietic transition (EHT) to generate blood, a process that requires progressive down-regulation of endothelial genes and induction of hematopoietic ones. Previously, we have shown that the transcription factor HoxA3 prevents blood formation by inhibiting Runx1 expression, maintaining endothelial gene expression and thus blocking EHT. In the present study, we show that HoxA3 also prevents blood formation by inhibiting Notch pathway. HoxA3 induced upregulation of Jag1 ligand in endothelial cells, which led to cis-inhibition of the Notch pathway, rendering the HE nonresponsive to Notch signals. While Notch activation alone was insufficient to promote blood formation in the presence of HoxA3, activation of Notch or downregulation of Jag1 resulted in a loss of the endothelial phenotype which is a prerequisite for EHT. Taken together, these results demonstrate that Notch pathway activation is necessary to downregulate endothelial markers during EHT

    Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China

    Get PDF
    Nitryl chloride (ClNO2) plays potentially important roles in atmospheric chemistry, but its abundance and effect are not fully understood due to the small number of ambient observations of ClNO2 to date. In late autumn 2013, ClNO2 was measured with a chemical ionization mass spectrometer (CIMS) at a mountain top (957 m above sea level) in Hong Kong. During 12 nights with continuous CIMS data, elevated mixing ratios of ClNO2 (>400 parts per trillion by volume) or its precursor N2O5 (>1000 pptv) were observed on six nights, with the highest ever reported ClNO2 (4.7 ppbv, 1 min average) and N2O5 (7.7 ppbv, 1 min average) in one case. Backward particle dispersion calculations driven by winds simulated with a mesoscale meteorological model show that the ClNO2/N2O5-laden air at the high-elevation site was due to transport of urban/industrial pollution north of the site. The highest ClNO2/N2O5 case was observed in a later period of the night and was characterized with extensively processed air and with the presence of nonoceanic chloride. A chemical box model with detailed chlorine chemistry was used to assess the possible impact of the ClNO2 in the well-processed regional plume on next day ozone, as the air mass continued to downwind locations. The results show that the ClNO2 could enhance ozone by 5-16% at the ozone peak or 11-41% daytime ozone production in the following day. This study highlights varying importance of the ClNO2 chemistry in polluted environments and the need to consider this process in photochemical models for prediction of ground-level ozone and haze. Key Points First observation of ClNO2 in the planetary boundary layer of China Combined high-resolution meteorological and measurement-constrained chemical models in data analysis ClNO2 enhances daytime ozone peak by 5-16% in well-processed PRD air.Department of Civil and Environmental Engineerin

    Rare manifestation of a c.290 C\u3eT, p.Gly97Glu VCP mutation

    Get PDF
    Introduction. The valosin-containing protein (VCP) regulates several distinct cellular processes. Consistent with this, VCP mutations manifest variable clinical phenotypes among and within families and are a diagnostic challenge. Methods. A 60-year-old man who played ice hockey into his 50’s was evaluated by electrodiagnostics, muscle biopsy, and molecular genetics. Results. With long-standing pes cavus and toe walking, our patient developed progressive weakness, cramps, memory loss, and paresthesias at age 52. An axonal sensorimotor neuropathy was found upon repeated testing at age 58. Neuropathic histopathology was present in the quadriceps, and exome sequencing revealed the VCP mutation c.290 C>T, p.Gly97Glu. Conclusions. Our patient reflects the clinical heterogeneity of VCP mutations, as his neurological localization is a spectrum between a lower motor neuron disorder and a hereditary axonal peripheral neuropathy such as CMT2. Our case demonstrates a rare manifestation of the c.290 C>T, pGly97Glu VCP mutation
    corecore