445 research outputs found

    Reasoning about fuzzy temporal and spatial information from the Web

    Get PDF

    Encoding Markov Logic Networks in Possibilistic Logic

    Get PDF
    Markov logic uses weighted formulas to compactly encode a probability distribution over possible worlds. Despite the use of logical formulas, Markov logic networks (MLNs) can be difficult to interpret, due to the often counter-intuitive meaning of their weights. To address this issue, we propose a method to construct a possibilistic logic theory that exactly captures what can be derived from a given MLN using maximum a posteriori (MAP) inference. Unfortunately, the size of this theory is exponential in general. We therefore also propose two methods which can derive compact theories that still capture MAP inference, but only for specific types of evidence. These theories can be used, among others, to make explicit the hidden assumptions underlying an MLN or to explain the predictions it makes.Comment: Extended version of a paper appearing in UAI 201

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    Predicting ConceptNet Path Quality Using Crowdsourced Assessments of Naturalness

    Full text link
    In many applications, it is important to characterize the way in which two concepts are semantically related. Knowledge graphs such as ConceptNet provide a rich source of information for such characterizations by encoding relations between concepts as edges in a graph. When two concepts are not directly connected by an edge, their relationship can still be described in terms of the paths that connect them. Unfortunately, many of these paths are uninformative and noisy, which means that the success of applications that use such path features crucially relies on their ability to select high-quality paths. In existing applications, this path selection process is based on relatively simple heuristics. In this paper we instead propose to learn to predict path quality from crowdsourced human assessments. Since we are interested in a generic task-independent notion of quality, we simply ask human participants to rank paths according to their subjective assessment of the paths' naturalness, without attempting to define naturalness or steering the participants towards particular indicators of quality. We show that a neural network model trained on these assessments is able to predict human judgments on unseen paths with near optimal performance. Most notably, we find that the resulting path selection method is substantially better than the current heuristic approaches at identifying meaningful paths.Comment: In Proceedings of the Web Conference (WWW) 201

    A finite-valued solver for disjunctive fuzzy answer set programs

    Get PDF
    Fuzzy Answer Set Programming (FASP) is a declarative programming paradigm which extends the flexibility and expressiveness of classical Answer Set Programming (ASP), with the aim of modeling continuous application domains. In contrast to the availability of efficient ASP solvers, there have been few attempts at implementing FASP solvers. In this paper, we propose an implementation of FASP based on a reduction to classical ASP. We also develop a prototype implementation of this method. To the best of our knowledge, this is the first solver for disjunctive FASP programs. Moreover, we experimentally show that our solver performs well in comparison to an existing solver (under reasonable assumptions) for the more restrictive class of normal FASP programs
    corecore