49 research outputs found

    The auto bailout: How we did it

    Get PDF

    Overhaul: An Insider\u27s Account of the Obama Administrations Emergency Rescue of the Auto Industry

    Get PDF

    Reflections on the Auto Restructurings (Speech at the Federal Reserve Conference)

    Get PDF

    YPFS Lessons Learned Oral History Project: An Interview with Steven Rattner

    Get PDF
    Suggested Citation Form: Rattner, Steven , 2020. “Lessons Learned Interview. Interview by Mary Anne Chute Lynch. Yale Program on Financial Stability Lessons Learned Oral History Project. February 19, 2020. Transcript. https://ypfs.som.yale.edu/library/ypfs-lesson-learned-oral-history-project-interview-steven-rattne

    Is Sensitivity to Anticoagulant Rodenticides Affected by Repeated Exposure in Hawks?

    Get PDF
    A seminal question in wildlife toxicology is whether exposure to an environmental contaminant, in particular a secondgeneration anticoagulant rodenticide, can evoke subtle long lasting effects on body condition, physiological function and survival. Many reports indicate that non-target predators often carry residues of several rodenticides, which is indicative of multiple exposures. An often-cited study in laboratory rats demonstrated that exposure to the second-generation anticoagulant rodenticide brodifacoum prolongs blood clotting time for a few days, but weeks later when rats were re-exposed to the first-generation anticoagulant rodenticide warfarin, coagulopathy was more pronounced in brodifacoum-treated rats than naïve rats exposed to warfarin. To further investigate this phenomenon, American kestrels were fed environmentally realistic doses of chlorophacinone or brodifacoum for a week, and following a week-long recovery period, birds were then challenged with a low-level dietary dose of chlorophacinone. In the present study, neither hematocrit nor clotting time (prothrombin time, Russell’s viper venom time) were differentially affected in sequentially exposed kestrels compared to naïve birds fed low-level dietary dose of chlorophacinone. While the present findings do not reveal lasting effects of anticoagulant exposure on blood clotting ability, findings in laboratory rats and other species have demonstrated such effects on blood clotting, and even other molecular pathways associated with immune function and xenobiotic metabolism. Additional studies using an environmentally realistic route of exposure and dose are underway to further test this hypothesis

    Development of Dietary-Based Toxicity Reference Values to Assess the Risk of Chlorophacinone to Non-Target Raptorial Birds

    Get PDF
    Regulatory changes in the use of some second-generation anticoagulant rodenticides in parts of North America may result in expanded use of first-generation anticoagulant rodenticides (FGARs). Recent toxicological studies with captive raptors have demonstrated that these species are considerably more sensitive to the FGAR diphacinone than traditional avian wildlife test species (mallard, bobwhite). We have now examined the toxicity of the FGAR chlorophacinone (CPN) to American kestrels fed rat tissue mechanically amended with CPN, or rat tissue containing biologically-incorporated CPN, for 7 days. Nominal CPN concentrations in these diets were 0.15, 0.75, and 1.5 μg/g food wet weight, and actual CPN concentration in diets were analytically verified as being close to target values. Food intake was consistent among groups, body weight fluctuated by less than 6%, exposure and adverse effects were generally dose-dependent, and there were no dramatic differences in toxicity between mechanically-amended and biologically-incorporated CPN diets. Using benchmark dose statistical methods, toxicity reference values at which clotting times were prolonged in 50% of the kestrels was estimated to be about 80 μg CPN consumed/kg body weight-day for prothrombin time and 40 μg CPN/kg body weight-day for Russell’s viper venom time. Based upon carcass CPN residues reported in rodents from field baiting studies, empirical measures of food consumption in kestrels, and dietary-based toxicity reference values derived from the 7-day exposure scenario, some free-ranging raptors consuming CPN-exposed prey might exhibit coagulopathy and hemorrhage. These sublethal responses associated with exposure to environmentally realistic concentrations of CPN could compromise survival of exposed birds

    Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors

    Get PDF
    Despite widespread use and benefit, there are growing concerns regarding hazards of second-generation anticoagulant rodenticides to non-target wildlife which may result in expanded use of first-generation compounds, including chlorophacinone (CPN). The toxicity of CPN over a 7-day exposure period was investigated in American kestrels (Falco sparverius) fed either rat tissue mechanically- amended with CPN, tissue from rats fed Rozol bait (biologically-incorporated CPN), or control diets (tissue from untreated rats or commercial bird of prey diet) ad libitum. Nominal CPN concentrations in the formulated diets were 0.15, 0.75 and 1.5 µg/g food wet weight, and measured concentrations averaged 94 % of target values. Kestrel food consumption was similar among groups and body weight varied by less than 6 %. Overt signs of intoxication, liver CPN residues, and changes in prothrombin time (PT), Russell’s viper venom time (RVVT) and hematocrit, were generally dose-dependent. Histological evidence of hemorrhage was present at all CPN dose levels, and most frequently observed in pectoral muscle and heart. There were no apparent differences in toxicity between mechanically-amended and biologically-incorporated CPN diet formulations. Dietary-based toxicity reference values at which clotting times were prolonged in 50 % of the kestrels were 79.2 µg CPN consumed/kg body weight-day for PT and 39.1 µg/kg body weight-day for RVVT. Based upon daily food consumption of kestrels and previously reported CPN concentrations found in small mammals following field baiting trials, these toxicity reference values might be exceeded by free-ranging raptors consuming such exposed prey. Tissue-based toxicity reference values for coagulopathy in 50 % of exposed birds were 0.107 µg CPN/g liver wet weight for PT and 0.076 µg/g liver for RVVT, and are below the range of residue levels reported in raptor mortality incidents attributed to CPN exposure. Sublethal responses associated with exposure to environmentally realistic concentrations of CPN could compromise survival of free-ranging raptors, and should be considered in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs

    Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors

    Get PDF
    Despite widespread use and benefit, there are growing concerns regarding hazards of second-generation anticoagulant rodenticides to non-target wildlife which may result in expanded use of first-generation compounds, including chlorophacinone (CPN). The toxicity of CPN over a 7-day exposure period was investigated in American kestrels (Falco sparverius) fed either rat tissue mechanically- amended with CPN, tissue from rats fed Rozol bait (biologically-incorporated CPN), or control diets (tissue from untreated rats or commercial bird of prey diet) ad libitum. Nominal CPN concentrations in the formulated diets were 0.15, 0.75 and 1.5 µg/g food wet weight, and measured concentrations averaged 94 % of target values. Kestrel food consumption was similar among groups and body weight varied by less than 6 %. Overt signs of intoxication, liver CPN residues, and changes in prothrombin time (PT), Russell’s viper venom time (RVVT) and hematocrit, were generally dose-dependent. Histological evidence of hemorrhage was present at all CPN dose levels, and most frequently observed in pectoral muscle and heart. There were no apparent differences in toxicity between mechanically-amended and biologically-incorporated CPN diet formulations. Dietary-based toxicity reference values at which clotting times were prolonged in 50 % of the kestrels were 79.2 µg CPN consumed/kg body weight-day for PT and 39.1 µg/kg body weight-day for RVVT. Based upon daily food consumption of kestrels and previously reported CPN concentrations found in small mammals following field baiting trials, these toxicity reference values might be exceeded by free-ranging raptors consuming such exposed prey. Tissue-based toxicity reference values for coagulopathy in 50 % of exposed birds were 0.107 µg CPN/g liver wet weight for PT and 0.076 µg/g liver for RVVT, and are below the range of residue levels reported in raptor mortality incidents attributed to CPN exposure. Sublethal responses associated with exposure to environmentally realistic concentrations of CPN could compromise survival of free-ranging raptors, and should be considered in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs

    Published at Univ. of Calif

    Get PDF
    AbstrAct: New regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides in the United States, and in some situations this action may be offset by expanded use of first-generation compounds. We have recently conducted several studies with captive adult American kestrels and eastern screech-owls examining the toxicity of diphacinone (DPN) using both acute oral and short-term dietary exposure regimens. Diphacinone evoked overt signs of intoxication and lethality in these raptors at exposure doses that were 20 to 30 times lower than reported for traditionally used wildlife test species (mallard and northern bobwhite). Sublethal exposure of kestrels and owls resulted in prolonged clotting time, reduced hematocrit, and/or gross and histological evidence of hemorrhage at daily doses as low as 0.16 mg DPN/kg body weight. Findings also demonstrated that DPN was far more potent in short-term 7-day dietary studies than in single-day acute oral exposure studies. Incorporating these kestrel and owl data into deterministic and probabilistic risk assessments indicated that the risks associated with DPN exposure for raptors are far greater than predicted in analyses using data from mallards and bobwhite. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs
    corecore