4,155 research outputs found
Improving whole farm and infield irrigation efficiencies using Irrimate tools
Whole farm irrigation water includes all pumped, delivered, captured, distributed and/or stored water within the farm gate. Utilisation of rainfall, recycled irrigation water, and harvested overland flows are included in the on-farm water volume. In assessing the performance of on-farm irrigation systems it is necessary to recognise that there are both agronomic and volumetric components of the system and that both contribute to the overall productive output. Evaluation of irrigation performance at the whole farm scale using total volumetric inputs and total production outputs provides a benchmark for comparative purposes but fails to provide an adequate diagnostic tool to identify either the source of inefficiencies or appropriate strategies to improve performance. Hence, diagnostic performance evaluation requires the measurement of the inputs and outputs for each sub-component of the system in a way which enables the partitioning of losses and the identification of the importance of specific loss mechanisms
Cosmology and Astrophysics from Relaxed Galaxy Clusters I: Sample Selection
This is the first in a series of papers studying the astrophysics and
cosmology of massive, dynamically relaxed galaxy clusters. Here we present a
new, automated method for identifying relaxed clusters based on their
morphologies in X-ray imaging data. While broadly similar to others in the
literature, the morphological quantities that we measure are specifically
designed to provide a fair basis for comparison across a range of data quality
and cluster redshifts, to be robust against missing data due to point-source
masks and gaps between detectors, and to avoid strong assumptions about the
cosmological background and cluster masses. Based on three morphological
indicators - Symmetry, Peakiness and Alignment - we develop the SPA criterion
for relaxation. This analysis was applied to a large sample of cluster
observations from the Chandra and ROSAT archives. Of the 361 clusters which
received the SPA treatment, 57 (16 per cent) were subsequently found to be
relaxed according to our criterion. We compare our measurements to similar
estimators in the literature, as well as projected ellipticity and other image
measures, and comment on trends in the relaxed cluster fraction with redshift,
temperature, and survey selection method. Code implementing our morphological
analysis will be made available on the web.Comment: MNRAS, in press. 43 pages in total, of which 17 are tables (please
think twice before printing). 18 figures, 4 tables. Machine-readable tables
will be available from the journal and at the url below; code will be posted
at http://www.slac.stanford.edu/~amantz/work/morph14
HERRO Mission to Mars Using Telerobotic Surface Exploration from Orbit
This paper presents a concept for a human mission to Mars orbit that features direct robotic exploration of the planet s surface via teleoperation from orbit. This mission is a good example of Human Exploration using Real-time Robotic Operations (HERRO), an exploration strategy that refrains from sending humans to the surfaces of planets with large gravity wells. HERRO avoids the need for complex and expensive man-rated lander/ascent vehicles and surface systems. Additionally, the humans are close enough to the surface to effectively eliminate the two-way communication latency that constrains typical robotic space missions, thus allowing real-time command and control of surface operations and experiments by the crew. Through use of state-of-the-art telecommunications and robotics, HERRO provides the cognitive and decision-making advantages of having humans at the site of study for only a fraction of the cost of conventional human surface missions. It is very similar to how oceanographers and oil companies use telerobotic submersibles to work in inaccessible areas of the ocean, and represents a more expedient, near-term step prior to landing humans on Mars and other large planetary bodies. Results suggest that a single HERRO mission with six crew members could achieve the same exploratory and scientific return as three conventional crewed missions to the Mars surface
Soil Microbial Dynamics and Biogeochemistry in Tropical Forests and Pastures, Southwestern Costa Rica
Tropical rain forest ecosystems are currently undergoing unprecedented rates of land conversion and land use change. Recent research suggests these activities profoundly influence nutrient cycling, but the principal mechanisms driving variation in nutrient status following land conversion are still not well understood. In this study, we used soils of varying fertility (oxisols and mollisols) in Costa Rica to investigate how conversion of tropical rain forest to cattle pasture affects the size and function of the microbial community, and to explore possible relationships between microbial dynamics and biogeochemistry.
Our pasture sites are relatively lightly managed, and total pools of carbon (C), nitrogen (N), and phosphorus (P) were not significantly different from their forest counterparts. However, pools of available elements were different; most notably, plant available forms of P were significantly lower in the oxisol pasture than in the oxisol forest site. In addition, we found that land conversion led to fundamental changes in the size and activity of the soil microbial community. Microbial biomass was consistently higher in forests than in pastures, particularly in the oxisol sites, where it was more than twice the pasture value. Forest sites were also characterized by a microbial community that was more active, responded more rapidly to carbon substrate additions, and showed strong seasonal variation. Our results provide evidence that changes in biogeochemical cycling following land conversion observed here and elsewhere may be directly related to changes in microbial community structure and function
Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints
We present cosmological constraints from measurements of the gas mass
fraction, , for massive, dynamically relaxed galaxy clusters. Our data
set consists of Chandra observations of 40 such clusters, identified in a
comprehensive search of the Chandra archive, as well as high-quality weak
gravitational lensing data for a subset of these clusters. Incorporating a
robust gravitational lensing calibration of the X-ray mass estimates, and
restricting our measurements to the most self-similar and accurately measured
regions of clusters, significantly reduces systematic uncertainties compared to
previous work. Our data for the first time constrain the intrinsic scatter in
, % in a spherical shell at radii 0.8-1.2 ,
consistent with the expected variation in gas depletion and non-thermal
pressure for relaxed clusters. From the lowest-redshift data in our sample we
obtain a constraint on a combination of the Hubble parameter and cosmic baryon
fraction, , that is insensitive to the
nature of dark energy. Combined with standard priors on and ,
this provides a tight constraint on the cosmic matter density,
, which is similarly insensitive to dark energy. Using
the entire cluster sample, extending to , we obtain consistent results for
and interesting constraints on dark energy:
for non-flat CDM models, and
for flat constant- models. Our results are both competitive
and consistent with those from recent CMB, SNIa and BAO data. We present
constraints on models of evolving dark energy from the combination of
data with these external data sets, and comment on the possibilities for
improved constraints using current and next-generation X-ray
observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can
be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2:
minor fix to table 1, updated bibliograph
Targeted ocean sampling guidance for tropical cyclones
This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3505–3518, doi:10.1002/2017JC012727.A 3-D variational ocean data assimilation adjoint approach is used to examine the impact of ocean observations on coupled tropical cyclone (TC) model forecast error for three recent hurricanes: Isaac (2012), Hilda (2015), and Matthew (2016). In addition, this methodology is applied to develop an innovative ocean observation targeting tool validated using TC model simulations that assimilate ocean temperature observed by Airborne eXpendable Bathy Thermographs and Air-Launched Autonomous Micro-Observer floats. Comparison between the simulated targeted and real observation data assimilation impacts reveals a positive maximum mean linear correlation of 0.53 at 400–500 m, which implies some skill in the targeting application. Targeted ocean observation regions from these three hurricanes, however, show that the largest positive impacts in reducing the TC model forecast errors are sensitive to the initial prestorm ocean conditions such as the location and magnitude of preexisting ocean eddies, storm-induced ocean cold wake, and model track errors.ONR Grant Numbers: N0001416WX01949, N0001416WX01384, N0001416WX01262;
NOAA Grant Number: NA13OAR483023
- …