210 research outputs found

    Reanalysis of the Stratosphere in GEOS-5: Lessons Learned from MERRA and Future Prospects

    Get PDF
    The MERRA configuration of GEOS-5 includes about 30 layers in the middle atmosphere, with an upper boundary near 80km. Stratospheric Sounding Unit (SSU) and Advanced microwave sounding unit ( AMSU) radiance data are assimilated, which yield good constraints on the analyses up to the upper stratosphere. This paper examines the performance of MERRA, with foci on: the somewhat erratic system behavior in the 1980s, as numerous SSU instruments were available for short periods; the transition from SSU to AMSU radiances; conflicts between equivalent instruments on different platforms, given in the context of bias correction and the diurnal cycle; and, the relative stability of the analyses in the 21st Century. The results from MERRA provide guidance for how to use the operational polar-orbiting datasets in future reanalyses. Additional discussion will be directed at the possible use of research data sets, from limb-sounding instruments, in future multi-decadal products

    Structure of the Upper Troposphere-Lower Stratosphere (UTLS) in GEOS-5

    Get PDF
    This study examines the structure of the upper troposphere and lower stratosphere in the GEOS-5 data assimilation system. Near-real time analyses, with a horizontal resolution of one-half or one quarter degree and a vertical resolution of about 1km in the tropopause region are examined with an emphasis on spatial structures at and around the tropopause. The contributions of in-situ observations of temperature and microwave and infrared radiances to the analyses are discussed, with some focus on the interplay between these types of observations. For a historical analysis (Merra) performed with GEOS-5, the impacts of changing observations on the assimilation system are examined in some detail - this documents some aspects of the time dependence of analysis that must be taken into account in the isolation of true geophysical trends. Finally, some sensitivities of the ozone analyses to input data and correlated errors between temperature and ozone are discussed

    What Have We Learned from MERRA about Reanalyses of the Stratosphere?

    Get PDF
    The Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis includes a well-resolved middle atmosphere. The upper boundary of the underlying model is in the mesosphere, near 80km, and the input data streams include the Stratospheric Sounding Unit (SSU) and Advanced Microwave Sounding Unit (AMSU) radiance observations. These two datasets provide observational constraints on the deep-layer thermal structure in approximately the 10-2hPa region, the middle to upper stratosphere, which is above the highest range of most radiosonde ascents. This analysis will focus on the difficulties of producing realistic analyses in the middle to upper stratosphere: these arise largely because of vertical averaging inherent in the AMSU and SSU observations, the sensitivity to model biases in this region, the relative biases among the same channels on different instruments, and the orbital sampling of the satellites (morning or afternoon orbits). These issues will be illustrated with examples from MERRA and enhanced by discussions of potential ways of improving the middle atmosphere in future reanalyses

    Diabatic circulations in the stratosphere

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX84141 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Using High-Resolution Forward Model Simulations of Ideal Atmospheric Tracers to Assess the Spatial Information Content of Inverse CO2 Flux Estimates

    Get PDF
    Attribution of observed atmospheric carbon concentrations to emissions on the country, state or city level is often inferred using "inversion" techniques. Such computations are often performed using advanced mathematical techniques, such as synthesis inversion or four-dimensional variational analysis, that invoke tracing observed atmospheric concentrations backwards through a transport model to a source region. It is, to date, not well understood how well such techniques can represent fine spatial (and temporal) structure in the inverted flux fields. This question is addressed using forward-model computations with idealized tracers emitted at the surface in a large number of grid boxes over selected regions and examining how distinctly these emitted tracers can be detected downstream. Initial results show that tracers emitted in half-degree grid boxes over a large region of the Eastern USA cannot be distinguished from each other, even at short distances over the Atlantic Ocean, when they are emitted in grid boxes separated by less than five degrees of latitude - especially when only total-column observations are available. A large number of forward model simulations, with varying meteorological conditions, are used to assess how distinctly three types observations (total column, upper tropospheric column, and surface mixing ratio) can separate emissions from different sources. Inferences inverse modeling and source attribution will be drawn

    Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Get PDF
    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletio

    Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    Get PDF
    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activit

    Chemical Source Inversion using Assimilated Constituent Observations in an Idealized Two-dimensional System

    Get PDF
    We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%

    Constraining Middle Atmospheric Moisture in GEOS-5 Using EOS-MLS Observations

    Get PDF
    Middle atmospheric water vapor plays an important role in climate and atmospheric chemistry. In the middle atmosphere, water vapor, after ozone and carbon dioxide, is an important radiatively active gas that impacts climate forcing and the energy balance. It is also the source of the hydroxyl radical (OH) whose abundances affect ozone and other constituents. The abundance of water vapor in the middle atmosphere is determined by upward transport of dehydrated air through the tropical tropopause layer, by the middle atmospheric circulation, production by the photolysis of methane (CH4), and other physical and chemical processes in the stratosphere and mesosphere. The Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis with GEOS-5 did not assimilate any moisture observations in the middle atmosphere. The plan is to use such observations, available sporadically from research satellites, in future GEOS-5 reanalyses. An overview will be provided of the progress to date with assimilating the EOS-Aura Microwave Limb Sounder (MLS) moisture retrievals, alongside ozone and temperature, into GEOS-5. Initial results demonstrate that the MLS observations can significantly improve the middle atmospheric moisture field in GEOS-5, although this result depends on introducing a physically meaningful representation of background error covariances for middle atmospheric moisture into the system. High-resolution features in the new moisture field will be examined, and their relationships with ozone, in a two-year assimilation experiment with GEOS-5. Discussion will focus on how Aura MLS moisture observations benefit the analyses

    The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Get PDF
    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate change over Antarctic and the Southern Ocean
    corecore