204 research outputs found

    Synthesis of a new hollandite-type manganese oxide with framework and interstitial Cr(III)

    Get PDF
    Hollandite with Cr(III) in both tunnel and framework sites has been prepared hydrothermally from layered manganese oxide precursors

    Nano-Size Layered Manganese-Calcium Oxide as an Efficient and Biomimetic Catalyst for Water Oxidation Under Acidic Conditions: Comparable To Platinum

    Get PDF
    Inspired by Nature's catalyst, a nano-size layered manganese-calcium oxide showed a low overvoltage for water oxidation in acidic solutions, which is comparable to platinum.Institute for Advanced Studies in Basic Sciences and the National Elite FoundationUS Department of Energy, Office of Basic Energy Sciences, Division of Chemical, Geochemical and Biological Sciences DE-FG02-86ER13622, DE-FG0209ER16119Russian Foundation for Basic Research 11-04-01389a, 12-0492101a, 13-04-92711aMolecular and Cell Biology Programs of the Russian Academy of SciencesCenter for Electrochemistr

    Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance

    Get PDF
    The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C

    Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum

    Get PDF
    This is the published version. ©Copyright Royal Society of Chemistry 2015Inspired by Nature's catalyst, a nano-size layered manganese–calcium oxide showed a low overvoltage for water oxidation in acidic solutions, which is comparable to platinum

    Water-gas-shift over metal-free nanocrystalline ceria: an experimental and theoretical study

    Get PDF
    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H-2. The degree of reduction of the ceria, specifically the (100) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite of in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. This study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.Peer ReviewedPostprint (author's final draft

    In situ characterization of mesoporous Co/CeO2 catalysts for the high-temperature water-gas shift

    Get PDF
    Mesoporous Co/CeO2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTS analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.Peer ReviewedPostprint (author's final draft

    Vapor-Phase Oxidation of Benzyl Alcohol Using Manganese Oxide Octahedral Molecular Sieves (OMS-2)

    Get PDF
    Vapor-phase selective oxidation of benzyl alcohol has been accomplished using cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) catalysts. A conversion of 92% and a selectivity to benzaldehyde of 99% were achieved using OMS-2. The role played by the oxidant in this system was probed by studying the reaction in the absence of oxidant. The natures of framework transformations occurring during the oxidation reaction were fully studied using temperature-programmed techniques, as well as in situ X-ray diffraction under different atmospheres

    New and future developments in catalysis: activation of carbon dioxide

    No full text
    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critic
    • …
    corecore