138 research outputs found

    Seasonal warming of the Middle Atlantic Bight Cold Pool

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 941–954, doi:10.1002/2016JC012201.The Cold Pool is a 20–60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month−1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.NSF Grant Number: OCE-13326662017-08-0

    Interannual and seasonal along-shelf current variability and dynamics: seventeen years of observations from the southern New England inner shelf

    Get PDF
    Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 2923–2933, https://doi.org/10.1175/jpo-d-22-0064.1.The characteristics and dynamics of depth-average along-shelf currents at monthly and longer time scales are examined using 17 years of observations from the Martha’s Vineyard Coastal Observatory on the southern New England inner shelf. Monthly averages of the depth-averaged along-shelf current are almost always westward, with the largest interannual variability in winter. There is a consistent annual cycle with westward currents of 5 cm s−1 in summer decreasing to 1–2 cm s−1 in winter. Both the annual cycle and interannual variability in the depth-average along-shelf current are predominantly driven by the along-shelf wind stress. In the absence of wind forcing, there is a westward flow of ∼5 cm s−1 throughout the year. At monthly time scales, the depth-average along-shelf momentum balance is primarily between the wind stress, surface gravity wave–enhanced bottom stress, and an opposing pressure gradient that sets up along the southern New England shelf in response to the wind. Surface gravity wave enhancement of bottom stress is substantial over the inner shelf and is essential to accurately estimating the bottom stress variation across the inner shelf.The National Science Foundation, Woods Hole Oceanographic Institution, the Massachusetts Technology Collaborative, and the Office of Naval Research have supported the construction and maintenance of MVCO. The analysis presented here was partially funded by the National Science Foundation under Grants OCE 1558874 and OCE 1655686

    Turbulent thermal-wind driven coastal upwelling: current observations and dynamics

    Get PDF
    Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 2909-2921, https://doi.org/10.1175/jpo-d-22-0063.1.A remarkably consistent Lagrangian upwelling circulation at monthly and longer time scales is observed in a 17-yr time series of current profiles in 12 m of water on the southern New England inner shelf. The upwelling circulation is strongest in summer, with a current magnitude of ∼1 cm s−1, which flushes the inner shelf in ∼2.5 days. The average winter upwelling circulation is about one-half of the average summer upwelling circulation, but with larger month-to-month variations driven, in part, by cross-shelf wind stresses. The persistent upwelling circulation is not wind-driven; it is driven by a cross-shelf buoyancy force associated with less-dense water near the coast. The cross-shelf density gradient is primarily due to temperature in summer, when strong surface heating warms shallower nearshore water more than deeper offshore water, and to salinity in winter, caused by fresher water near the coast. In the absence of turbulent stresses, the cross-shelf density gradient would be in a geostrophic, thermal-wind balance with the vertical shear in the along-shelf current. However, turbulent stresses over the inner shelf attributable to strong tidal currents and wind stress cause a partial breakdown of the thermal-wind balance that releases the buoyancy force, which drives the observed upwelling circulation. The presence of a cross-shelf density gradient has a profound impact on exchange across this inner shelf. Many inner shelves are characterized by turbulent stresses and cross-shelf density gradients with lighter water near the coast, suggesting turbulent thermal-wind-driven coastal upwelling may be a broadly important cross-shelf exchange mechanism.The National Science Foundation, Woods Hole Oceanographic Institution, the Massachusetts Technology Collaborative, and the Office of Naval Research have supported the construction and maintenance of MVCO. The analysis presented here was partially funded by the National Science Foundation under Grants OCE 1558874 and OCE 1655686

    Wind-driven circulation in a shelf valley. Part I : Mechanism of the asymmetrical response to along-shelf winds in opposite directions

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.2018-06-0

    Inner-shelf response to cross-chelf wind stress : the importance of the cross-shelf density gradient in an idealized numerical model and field observations

    Get PDF
    Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 86–103, doi:10.1175/JPO-D-13-075.1.This study investigates the effects of horizontal and vertical density gradients on the inner-shelf response to cross-shelf wind stress by using an idealized numerical model and observations from a moored array deployed south of Martha’s Vineyard, Massachusetts. In two-dimensional (no along-shelf variation) numerical model runs of an initially stratified shelf, a cross-shelf wind stress drives vertical mixing that results in a nearly well-mixed inner shelf with a cross-shelf density gradient because of the sloping bottom. The cross-shelf density gradient causes an asymmetric response to on- and offshore wind stresses. For density increasing offshore, an offshore wind stress drives a near-surface offshore flow and near-bottom onshore flow that slightly enhances the vertical stratification and the cross-shelf circulation. An onshore wind stress drives the reverse cross-shelf circulation reducing the vertical stratification and the cross-shelf circulation. A horizontal Richardson number is shown to be the nondimensional parameter that controls the dependence of the wind-driven nondimensional cross-shelf transport on the cross-shelf density gradient. Field observations show the same empirical relationship between the horizontal Richardson number and transport fraction as the model predicts. These results show that it is the cross-shelf rather than vertical density gradient that is critical to predicting the inner-shelf cross-shelf transport driven by a cross-shelf wind stress.This work was funded by Ocean Sciences Division of the National Science Foundation Grant OCE-0548961 and by the Woods Hole Oceanographic Institution through the Academic Programs Office and the Coastal Ocean Institute. Data central to this study were provided by the Martha’s Vineyard Coastal Observatory, which is funded by WHOI and the Jewett/EDUC/Harrison Foundation.2014-07-0

    Wind-driven circulation in a shelf valley. Part II : Dynamics of the along-valley velocity and transport

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.2018-10-1

    Observations of nonlinear momentum fluxes over the inner continental shelf

    Get PDF
    Nonlinear momentum fluxes over the inner continental shelf are examined using moored observations from multiple years at two different locations in the Middle Atlantic Bight. Inner shelf dynamics are often described in terms of a linear alongshore momentum balance, dominated by frictional stresses generated at the surface and bottom. In this study, observations over the North Carolina inner shelf show that the divergence of the cross-shelf flux of alongshore momentum is often substantial relative to the wind stress during periods of strong stratification. During upwelling at this location, offshore fluxes of alongshore momentum in the surface layer partially balance the wind stress and reduce the role of the bottom stress. During downwelling, onshore fluxes of alongshore momentum reinforce the wind stress and increase the role of bottom stress. Over the New England inner shelf, nonlinear terms have less of an impact in the momentum balance and exhibit different relationships with the wind forcing. Differences between locations and time periods are explained by variations in bottom slope, latitude, vertical shear and cross-shelf exchange. Over the New England inner shelf, where moored density data are available, variations in vertical shear are explained by a combination of thermal wind balance and wind stress. An implication of this study is that cross-shelf winds can potentially influence the alongshore momentum balance over the inner shelf, in contrast with deeper locations over the middle to outer shelf

    The effect of wind direction on cross-shelf transport on an initially stratified inner shelf

    Get PDF
    Cross-shelf and along-shelf wind stresses both independently have been shown to drive transport across the inner shelf. We investigate how the circulation and density fields respond to simultaneous cross- and along-shelf wind forcing using a set of model experiments on an initially stratified inner shelf. For all wind directions with a downwelling along-shelf component, the inner shelf is unstratified and the cross-shelf wind dominates transport. For wind directions with an upwelling along-shelf component, the inner shelf can be stratified and the transition from inner to midshelf occurs over a wide swath of shelf. In this transition region, the effects of the cross- and along-shelf wind stresses are not separable, because the response to each component is tied to the other by the density field on which they both act. A consequence of this asymmetry is that offshore transport occurs for more compass directions, and more strongly than onshore transport, making offshore transport more likely under variable wind conditions in the field, even if the average wind stress were near zero. These model results demonstrate a strongly asymmetric directional dependence of wind-driven, cross-shelf transport on the inner shelf. Field observations from the inner shelf of Martha\u27s Vineyard, Massachusetts, substantiate both the directional dependence and magnitude of the transport predicted by the model

    Buoyant gravity currents along a sloping bottom in a rotating fluid

    Get PDF
    Author Posting. © Cambridge University Press, 2002. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 464 (2002): 251-278, doi:10.1017/S0022112002008868.The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g[prime prime or minute], Coriolis frequency f, and bottom slope [alpha]. The nose propagation speed is cp [similar] cw/ (1 + cw/c[alpha]) and the width of the buoyant gravity current is Wp [similar] cw/ f(1 + cw/c[alpha]), where cw = (2Qg[prime prime or minute] f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and c[alpha] = [alpha]g/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/c[alpha], which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/c[alpha] [rightward arrow] 0) or approaches the slope-controlled limit (cw/c[alpha] [rightward arrow] [infty infinity]). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/c[alpha] = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.This research was supported by NSF grant OCE-0095059

    Buoyancy arrest and bottom Ekman transport. Part II : oscillating flow

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 636-655, doi:10.1175/2009JPO4267.1.The effects of a sloping bottom and stratification on a turbulent bottom boundary layer are investigated for cases where the interior flow oscillates monochromatically with frequency ω. At higher frequencies, or small slope Burger numbers s = αN/f (where α is the bottom slope, N is the interior buoyancy frequency, and f is the Coriolis parameter), the bottom boundary layer is well mixed and the bottom stress is nearly what it would be over a flat bottom. For lower frequencies, or larger slope Burger number, the bottom boundary layer consists of a thick, weakly stratified outer layer and a thinner, more strongly stratified inner layer. Approximate expressions are derived for the different boundary layer thicknesses as functions of s and σ = ω/f. Further, buoyancy arrest causes the amplitude of the fluctuating bottom stress to decrease with decreasing σ (the s dependence, although important, is more complicated). For typical oceanic parameters, arrest is unimportant for fluctuation periods shorter than a few days. Substantial positive (toward the right when looking toward deeper water in the Northern Hemisphere) time-mean flows develop within the well-mixed boundary layer, and negative mean flows exist in the weakly stratified outer boundary layer for lower frequencies and larger s. If the interior flow is realistically broad band in frequency, the numerical model predicts stress reduction over all frequencies because of the nonlinearity associated with a quadratic bottom stress. It appears that the present one-dimensional model is reliable only for time scales less than the advective time scale that governs interior stratification.This research was sponsored by the National Science Foundation, Physical Oceanography Program through Grant OCE 0647050
    • …
    corecore