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ABSTRACT

The effects of a sloping bottom and stratification on a turbulent bottom boundary layer are investigated for

cases where the interior flow oscillates monochromatically with frequency v. At higher frequencies, or small

slope Burger numbers s 5 aN/f (where a is the bottom slope, N is the interior buoyancy frequency, and f is

the Coriolis parameter), the bottom boundary layer is well mixed and the bottom stress is nearly what it would

be over a flat bottom. For lower frequencies, or larger slope Burger number, the bottom boundary layer

consists of a thick, weakly stratified outer layer and a thinner, more strongly stratified inner layer. Approx-

imate expressions are derived for the different boundary layer thicknesses as functions of s and s 5 v/f.

Further, buoyancy arrest causes the amplitude of the fluctuating bottom stress to decrease with decreasing s

(the s dependence, although important, is more complicated). For typical oceanic parameters, arrest is un-

important for fluctuation periods shorter than a few days. Substantial positive (toward the right when looking

toward deeper water in the Northern Hemisphere) time-mean flows develop within the well-mixed boundary

layer, and negative mean flows exist in the weakly stratified outer boundary layer for lower frequencies and

larger s. If the interior flow is realistically broad band in frequency, the numerical model predicts stress

reduction over all frequencies because of the nonlinearity associated with a quadratic bottom stress. It ap-

pears that the present one-dimensional model is reliable only for time scales less than the advective time scale

that governs interior stratification.

1. Introduction

Over a sloping bottom, steady along-isobath-interior

flow gives rise to a near-bottom cross-isobath Ekman

transport and, if stratification is present, produces cross-

isobath density gradients. These gradients, through a

thermal wind balance, ultimately bring the bottom ve-

locity and bottom stress to zero. This general problem

was addressed by Weatherly and Martin (1978, hereafter

WM78) and then subsequently by numerous other au-

thors (e.g., MacCready and Rhines 1991; Trowbridge

and Lentz 1991; MacCready and Rhines 1993; Garrett

et al. 1993; Ramsden 1995a,b; Middleton and Ramsden

1996, hereafter MR96; Romanou and Weatherly 2001,

2004; Brink and Lentz 2010, hereafter Part I). Up until

Ramsden (1995b), effort was concentrated mainly on

initial-value problems where an along-isobath interior

flow is suddenly imposed. Since then, a few authors (e.g.,

MR96; Romanou and Weatherly 2004) considered the

bottom boundary layer response to time-dependent (os-

cillating) interior flow. There are substantial asymmetries

in the initial-value problem, whereby upwelling bottom

Ekman transports are associated with thin (relative to the

flat-bottom case), highly stable boundary layers and with

rapid adjustment, whereas downwelling Ekman transport

causes gravitational instabilities and hence deeper bound-

ary layers and slower adjustment (Fig. 1). Because thinner

boundary layers require less total cross-isobath volume

transport to reach geostrophic equilibrium, the differ-

ence in time scales makes physical sense. In either case,

the steady-state boundary layer is always stably stratified,

and fairly simple analytical expressions exist to describe

the layer thickness (Part I). Because of the upwelling–

downwelling asymmetries, one might expect some po-

tentially interesting effects in an oscillating problem

where flow passes alternatively from one direction to the

other.

Boundary layer arrest is important for a number of

reasons. For example, Chapman and Lentz (1994) and

Chapman (2000b) showed how physics related to the

buoyancy arrest mechanism determine the cross-shelf
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locations of surface-to-bottom fronts in the coastal ocean.

Further, Chapman and Lentz (1994) and Chapman (2000a)

show how the absence of bottom stress in an adjusted

current greatly extends the alongshore scale of an along-

isobath current. It is not obvious how these results, de-

rived for a nearly steady flow, might be affected by the

presence of a fluctuating flow. In addition, there are long-

standing questions about the extent to which buoyancy

arrest mitigates the frictional damping experienced by

time-dependent flows such as coastal trapped waves in

the ‘‘weather band’’ of 2–10-day time scales. It is intuitive,

given the finite adjustment time scales, that there should

be frequency ranges where arrest is or is not important.

Thus, we treat buoyancy arrest in the case where the

interior flow is time dependent. This problem has been

explored to some extent in the literature (e.g., Ramsden

1995b; MR96; Romanou and Weatherly 2004), but we

attempt here to take a somewhat more systematic ap-

proach to the problem. Our ultimate goal is to reach

a level of understanding that can be applied to the real

ocean, where there is a continuous temporal spectrum

of variability and where lateral variations allow density

advection above the bottom boundary layer. To reach

this goal, the problem must be broken into an orderly

progression of steps. The first task, undertaken here, is

to treat the case of an oscillating interior flow in the

classical one-dimensional context. This simple problem

allows an understanding of how boundary layer prop-

erties (structure, degree of arrest, and flow rectification)

depend on the key parameters, such as stratification and

forcing frequency (section 4). A necessary preliminary

for this problem is to review and encapsulate results

for an oscillating flow over a flat bottom (section 3). In

approaching both of these tasks, results are consistently

summarized in terms of boundary layer thicknesses and

bottom stress.

2. Model formulation

Following WM78, for example, the equations of mo-

tion are rotated into a coordinate system where axes are

either parallel or perpendicular (z) to the bottom. The

interior velocity (uI, vI) is constant with height, and

the initial interior density rI 5 r0 1 rIzz varies linearly in

the vertical. Under these conditions, the equations

governing boundary layer quantities are
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Subscripts with regard to an independent variable in-

dicate partial differentiation; A and K are an eddy vis-

cosity and eddy diffusivity, respectively; and uE, vE, and rE

are boundary layer cross-isobath velocity, along-isobath

velocity, and density, respectively (where, e.g., the total

along-isobath velocity y 5 vI 1 vE). All boundary layer

variables vanish far from the bottom. The Coriolis pa-

rameter is f, a is the (constant, small) bottom slope, and

g is the acceleration due to gravity. For all cases given

here, a $ 0; therefore, upslope flow corresponds to u . 0.

In the interior (well above the bottom boundary layer),

diffusion is very slow, so the buoyancy frequency squared

FIG. 1. Schematic of bottom boundary layer processes in the case of a steady interior flow,

where UE is the bottom Ekman transport before buoyancy arrest is complete. The contours

represent the density field after arrest is complete. Shown are the cases of (left) negative

(upwelling favorable) and (right) positive (downwelling favorable) along-isobath velocity.
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is effectively constant at N2 5 2grIz/r0. This formula-

tion reduces a physically two-dimensional problem to a

one-dimensional system that varies spatially only in the

rotated vertical direction. The Burger number and fric-

tional parameter,

s 5
aN

f
and d 5

c
D

N

f
(2a, b)

(where cD is the bottom drag coefficient), respectively,

are both frequently used nondimensional numbers in this

analysis (e.g., Trowbridge and Lentz 1991).

Solutions to (1) are matched to a logarithmic layer at

height z 5 zT above the physical bottom:
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The bottom roughness is described by z0, and k 5 0.4 is

von Kármán’s constant.

The interior flow is given as

u
I
5 0, v

I
5 v

0
sin(vt), (4a, b)

and the normalized frequency s 5 v/f is a third impor-

tant nondimensional parameter in the problem. The

restrictive form (4) for the time-dependent interior flow

requires a specific combination (analogous to a Kelvin

wave) of spatially uniform x and y pressure gradients.

An alternative approach is to set vI and require no along-

isobath pressure gradient, so that uI 6¼ 0, and the overall

interior flow amplitude varies with frequency. This would

complicate interpretation a good deal. Other boundary

conditions are that there is no density flux through the

bottom and that (AuEz)z 5 (AvEz)z 5 (Krz)z 5 0 at the

top of the numerical grid (normally z 5 60 m but higher

if required). These conditions maintain a linear interior

density profile and yield no turbulent stress at the upper

boundary (Part I).

The system (1) is solved numerically using implicit

time stepping on a vertically uniform 20-cm grid (Part I).

The advantage of the constant grid spacing is that it allows

resolution of the sharp density or velocity jumps that can

occur across the top of the bottom boundary layer. The

Mellor–Yamada 2.5 turbulence closure scheme is used

throughout the following unless otherwise noted. A sam-

pling of runs was repeated with Mellor–Yamada 2.0 and

with k–« schemes, and there were quantitative differences

(typically less than 20% in boundary layer thickness) but no

qualitative differences in the results. All schemes are im-

plemented following Wijesekera et al. (2003).

3. Flat bottom with time dependence

a. Analysis

Oscillating flow above a flat bottom (a 5 s 5 0) pro-

vides an important context for the more complex prob-

lem over a sloping bottom. Consider a flat-bottom ocean,

with a slab-like bottom boundary layer of thickness h. In

this case, the layer-integrated equations of motion are

U
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where UE and VE are transports (depth-integrated bound-

ary layer velocities), htyi is the amplitude of the bottom

stress associated with the interior flow (hji denotes the

amplitude of a fluctuating quantity j), and r describes

a Raleigh friction associated with bottom friction acting

on the boundary layer component of flow [the more in-

tuitive form, stress proportional to velocity (e.g., UE/h),

does not perform any better]. Then,

U
E
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E
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E
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E
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and, from (5),
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where v9 5 v 2 ir.

The problem is closed by assuming that the boundary

layer thickness is consistent with the bulk Richardson

number being constant at a critical value of Rb. The

associated velocity and density jumps across the top of

the layer are dv and dr. A representative shear across

the top of the layer is then given, using (7), by

dvj j2 5 r�2
0 h�2 [(f htyi)2

1 (v9htyi)2]( f 2 � v92)�2
��� ���. (8)

Assuming that the initial stratification is given by r 5

r0 1 rIzz, the density difference resulting from entrain-

ment across the top of the bottom mixed layer is dr 5

2rIzh/2. Thus, the bulk Richardson number for the bot-

tom boundary layer is

R
b

5
ghdr

(r
0

dvj j2)

5 0.5N2h4hu*i�4 ( f 2 � v92)2( f 2 1 v92)�1
��� ���, (9)

638 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40



where u* is the friction velocity and hu*i2 5 htyi/r0.

Equation (9) is solved for h to obtain

hF 5 hu*i(2R
b
)1/4 f 2 1 v92
�� ��1/4

f 2 � v92
�� ��1/2

N�1/2. (10)

The superscript F is used to identify this as the boundary

layer thickness over a flat bottom. Expression (10) can

be expanded for r� v to obtain

hF 5 hu*ic f 2 1 v2
�� ��1/4

( f 2 � v2)2
1 4r2v2

��� ����1/4

N�1/2,

(11)

where c 5 (2Rb)1/4. Inclusion of the weak bottom stress

acting on the boundary layer (as opposed to interior)

flow avoids a singularity that would otherwise occur at

v 5 6f.

The boundary layer thickness (11) with steady con-

ditions and r 5 0 becomes

hF
0 ’ hu*ic(Nf )�1/2, (12)

analogous to the Pollard Rhines and Thompson (1973)

depth for the ocean surface mixed layer (Thompson

1973). WM78 have a similar expression, but replace N by

( f2 1 N2)1/2, a negligible difference under most stratified

conditions. Expression (13) agrees quantitatively with the

WM78 result if c 5 (2Rb)1/4 5 1.3 (see section 3b).

It is necessary to relate the interior velocity vI to the

bottom stress. WM78, in their steady problem, use u* 5

b1cD
1/2vI, where b1 is an empirical constant. Although

this expression is a reasonable starting point, it must be

modified to account for time dependence. Specifically,

there is a decrease in the bottom stress (for a fixed vI

amplitude) near the inertial frequency (as can be seen by

considering the time-dependent boundary layer equa-

tions with a constant eddy viscosity A0). This near-inertial

behavior is treated empirically here by modifying the as-

sumed velocity –stress relation to

hu*iF 5 b
1
c1/2

D v
0
F(v) and (13a)

F(v) 5
1

2
(2� e�l f1vj j/ f � e�l f�vj j/ f ), (13b)

where l is an empirical constant.

b. Calculations

A sequence of 28 flat-bottom, numerical model ex-

periments was conducted, and these included variations

in stratification, Coriolis parameter, bottom roughness,

interior flow amplitude, and forcing period (Table 1). In

each case, the model uses strictly oscillating interior

flow, starting from rest and uses Mellor–Yamada level

2.5 turbulence closure. The model is run for 25 days, and

the boundary layer thickness is determined (following

WM78) as hq, the height at which turbulent kinetic en-

ergy, averaged over a period, goes to zero. A more tra-

ditional alternative boundary layer definition is the height

at which the vertical density gradient is a maximum hr

(location of the density ‘‘cap’’), and this is the same as hq

(to within a few tenths of a meter) over a flat bottom.

This maximum gradient definition becomes problematic,

however, when (as in the steady downwelling problem

over a sloping bottom; Part I) there is not an obvious

sharp cap. In much of the following, we will use yet

another boundary layer definition, hrr, the height above

the bottom where the period-averaged second derivative

of density rzz reaches a positive extremum. When the

boundary layer has a sharp density cap, hrr is virtually

identical to hr, the thickness defined by the maximum

density gradient. When the boundary layer structure is

smoother (as in the ‘‘smooth’’ upwelling case in Part I),

the hrr definition selects the height at which the bound-

ary layer transitions from a strongly stratified lower re-

gion to a weakly stratified upper region. In the following,

the turbulence hq and second-derivative hrr definitions

are used exclusively. The numerical boundary layer thick-

ness is always computed using variables (density or

TABLE 1. Summary of flat-bottom model runs.

Run N2 3 104 f 3 104 v0 Period z0 hq

No. (s22) (s21) (cm s21) (h) (cm) (m)

1 0.95 1.00 20 12.42 0.03 17.1

2 0.95 1.00 30 12.42 0.03 24.8

3 0.95 1.00 40 12.42 0.03 32.7

4 0.95 1.00 10 12.42 0.03 9.1

5 0.95 0.63 15 12.42 0.03 10.3

6 0.00 1.00 20 12.42 0.03 55.8

7 0.04 1.00 20 12.42 0.03 37.8

8 0.19 1.00 20 12.42 0.03 26.5

9 4.76 1.00 20 12.42 0.03 10.5

10 0.95 0.10 20 12.42 0.03 15.1

11 0.95 0.50 20 12.42 0.03 15.3

12 0.95 1.00 20 6.00 0.03 14.1

12a 0.95 1.00 20 8.73 0.03 14.7

12b 0.95 1.00 20 13.96 0.00 18.1

12c 0.95 1.00 20 17.45 0.03 13.7

12d 0.95 1.00 20 15.58 0.03 19.3

13 0.95 1.00 20 18.00 0.03 21.4

13a 0.95 1.00 20 20.53 0.03 20.1

14 0.95 1.00 20 24.00 0.03 19.3

15 0.95 1.00 20 30.00 0.03 18.1

16 0.95 1.00 20 36.00 0.03 17.7

17 0.95 1.00 20 48.00 0.03 17.5

18 0.95 1.00 20 72.00 0.03 17.5

19 0.95 1.00 20 20.00 0.03 16.7

20 0.95 1.00 20 192.00 0.03 17.1

21 0.95 1.00 20 288.00 0.03 17.2

22 0.95 1.00 20 12.42 0.02 16.5

23 0.95 1.00 20 12.42 0.04 17.3

APRIL 2010 B R I N K A N D L E N T Z 639



turbulence kinetic energy) averaged over the last full

forcing period. Because the boundary layer thickness

varies only slowly for times greater than 10–20 days, this

approach does not ‘‘smear’’ the profile badly, and it does

average out any intermittency. It might seem more nat-

ural to estimate the boundary layer thickness instanta-

neously, but we found in some cases (e.g., hq for Fig. 6c)

that this leads to considerable variability and ambiguity.

We find that the turbulence-based estimate hq for the

period average equals the maximum instantaneous hq

over that period. The density-based estimate hrr averaged

over a period is less intermittent, and the period-averaged

value is typically near the mode of the instantaneous

values. For a sharply capped boundary layer, as is found

with a flat bottom, averaging layer thickness makes little

difference after the first inertial period.

Numerical model results are used to evaluate the scal-

ings and to calculate the empirical coefficients by mini-

mizing rms error. Specifically, b1 5 0.65 and l 5 7.5 by

fitting (13), and r2 5 1 3 1029 s22 and c 5 2.2 by fitting

(11). The resulting rms error in the hu*iF estimate (scaling

versus numerical results) is 0.035 cm s21 and the corre-

lation is 0.99. In the fit for hq, the rms error is 1.5 m and

the correlation 0.99. The expressions (11) and (13) rea-

sonably approximate the near-inertial peak in layer thick-

ness and reduction in bottom stress, respectively (Fig. 2).

In the limit of zero frequency, (12) is expected to agree

with the WM78 results. Indeed, the form is essentially the

same, but WM78 obtain c 5 1.3 instead of the present 2.2.

This difference is investigated through a series of model

runs. For an initial-value problem with steady interior

flow, the exact WM78 results were reproduced with

a logarithmically stretched grid, Mellor–Yamada 2.0

closure and a five-day run length. Three things about the

present calculations differ from WM78. First, WM78 used

a vertically stretched grid that has relatively coarse reso-

lution (100 cm) away from the bottom (although their

near-bottom resolution was 1 cm). All else being the

same, the present uniformly fine grid leads to a typical

increase in calculated hq of about 15%–25%. Second,

WM78 used Mellor–Yamada 2.0 closure, but Mellor–

Yamada 2.5 is used here; this typically increases the

boundary layer thickness by about 30% for the steady

problem (e.g., Part I, appendix). Finally, WM78 seem to

have typically run their model for about 5 days versus the

present 25 days. Longer runs allow slow thickening after

the half first inertial period, hence a typical increase in

layer thickness of about 15% over the additional 20 days

(so that c is actually weakly time dependent). These three

differences in model usage all work to increase hq and

together account for the difference between c 5 1.3 and

c 5 2.2.

4. The oscillating sloping bottom model

a. Overview of numerical results

To gain an initial appreciation of the problem, we first

describe a sampling of results from a sequence of 53

numerical model runs (Table 2) that include variations

in bottom slope, stratification, bottom roughness, Cori-

olis parameter, and the amplitude and frequency of in-

terior flow.

First, consider boundary layer thickness as a function of

s for numerical runs with a fixed 4-day vI period (Fig. 3,

top). There are two boundary layer structure regimes in

this case. For smaller s (,0.3), the two boundary layer

depth definitions (hq and hrr) are virtually identical be-

cause there is a bottom mixed layer with a sharp density

cap at its top (Fig. 4, solid line). The thickness values in-

deed approach the expected flat-bottom value [Eq. (11)]

of 17 m as s / 0. As s increases toward s 5 0.3, the

boundary layer (by either definition) becomes thinner,

as might be expected (e.g., MR96; Part I) in the steady

capped upwelling case when the bottom slope or strat-

ification increases (s increases). In this regime of weak

bottom slope, the downward cross-isobath density trans-

port in the bottom boundary layer [which is proportional

to Ekman velocity times sN/s in (1c)] is never strong

enough to destabilize the layer. That is to say that the

density contrast associated with entrainment across the

top of the layer (Fig. 5a) is always strong enough to

counteract destabilization by downslope Ekman trans-

port. The fluctuating cross-isobath flow is relatively sym-

metric (Fig. 5b); it has about the same amplitude and

vertical structure during both the upwelling (positive;

days 2–4, 6–8, and 10–12) and downwelling phases.

FIG. 2. Flat-bottom results: (top) boundary layer thickness and

(bottom) major-axis bottom stress amplitude as a function of

normalized frequency with N2, v0, and f all held constant at 1 3

1024 s22, 20 cm s21, and 1 3 1024 s21, respectively. The solid lines

are the functional fits using (11) and (13).
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Some asymmetry between phases is obvious in the eddy

viscosity (Fig. 5c; taken here as a measure of boundary

layer turbulence), in that the eddy viscosity is larger and

extends farther upward during the downwelling (u , 0)

phase, as might be expected, given the decreased strat-

ification (Fig. 5a) during this phase. This regime with an

overall sharply defined boundary layer, where hq and hrr

are virtually equal, is henceforth called the capped

TABLE 2. Summary of sloping-bottom oscillating runs.

Run No. N2 3 104 (s22) f 3 104 (s21) v0 (cm s21) Period (days) z0 (cm) a hq (m) hrr (m) s

40 0.95 1.00 20 4.00 0.03 0 17.1 17.1 0

41 0.95 1.00 20 4.00 0.03 0.0005 17.3 17.5 0.05

42 0.95 1.00 20 4.00 0.03 0.0010 16.3 16.5 0.10

42.5 0.95 1.00 20 4.00 0.03 0.0018 14.7 14.9 0.18

43 0.95 1.00 20 4.00 0.03 0.0025 13.1 13.3 0.24

43.5 0.95 1.00 20 4.00 0.03 0.0037 17.0 8.9 0.36

44 0.95 1.00 20 4.00 0.03 0.0050 18.3 7.9 0.49

44.25 0.95 1.00 20 4.00 0.03 0.0062 21.2 7.5 0.60

44.5 0.95 1.00 20 4.00 0.03 0.0075 22.4 7.9 0.73

46 0.95 1.00 20 4.00 0.03 0.0100 23.0 7.7 0.98

46.25 0.95 1.00 20 4.00 0.03 0.0125 22.1 7.3 1.22

46a 0.95 1.00 20 4.00 0.03 0.0150 22.2 4.7 1.46

46.75 0.95 1.00 20 4.00 0.03 0.0175 21.4 7.5 1.71

49 0.95 1.00 20 2.00 0.03 0.0050 13.4 8.7 0.49

50 0.95 1.00 20 8.00 0.03 0.0050 27.1 7.9 0.49

51 0.95 1.00 20 8.00 0.03 0.0025 19.7 9.5 0.24

52 0.95 1.00 220 8.00 0.03 0.0025 17.5 9.5 0.24

53 0.48 1.00 20 8.00 0.03 0.0025 21.1 13.1 0.17

54 0.95 1.00 30 8.00 0.03 0.0025 29.3 13.7 0.24

55 0.95 1.00 230 8.00 0.03 0.0025 24.9 13.5 0.24

56 0.95 1.00 30 8.00 0.03 0.0050 38.4 11.3 0.49

57 0.95 1.00 230 8.00 0.03 0.0050 38.5 11.3 0.49

58 0.95 0.50 30 8.00 0.03 0.0050 34.5 12.7 0.98

59 0.95 1.00 30 8.00 0.03 0.0100 38.3 9.3 0.98

60 0.48 1.00 30 8.00 0.03 0.0050 40.3 13.9 0.34

61 0.95 1.00 20 2.00 0.03 0.0050 14.0 8.7 0.49

62 0.95 1.00 220 2.00 0.03 0.0050 13.0 8.7 0.49

63 0.95 1.00 20 1.50 0.03 0.0050 13.6 13.7 0.49

64 0.95 1.00 20 1.00 0.03 0.0050 13.5 13.3 0.49

65 0.95 1.00 20 0.75 0.03 0.0050 16.2 16.1 0.49

66 0.95 1.00 20 0.50 0.03 0.0050 14.9 14.7 0.49

66.25 0.95 1.00 20 0.37 0.03 0.0050 10.3 10.7 0.49

66.5 0.95 1.00 20 0.58 0.03 0.0050 18.2 18.3 0.49

66.75 0.95 1.00 20 0.65 0.03 0.0050 14.1 14.1 0.49

67 0.95 1.00 20 0.25 0.03 0.0050 9.0 9.3 0.49

67.25 0.95 1.00 20 8.00 0.03 0.0050 27.2 7.9 0.49

67.5 0.95 1.00 20 12.00 0.03 0.0050 29.8 7.1 0.49

67.75 0.95 1.00 20 0.30 0.03 0.0050 9.5 9.7 0.49

68 0.95 1.00 20 0.60 0.03 0.0100 13.7 13.7 0.98

69 0.95 1.00 20 0.40 0.03 0.0100 12.8 12.7 0.98

70 0.95 1.00 20 0.80 0.03 0.0100 11.0 7.3 0.98

71 0.95 1.00 220 4.00 0.03 0.0050 18.5 7.9 0.49

72 0.95 1.00 50 0.52 0.03 0.0050 36.1 36.1 0.49

73 0.95 0.50 20 8.00 0.03 0.0100 20.2 8.1 1.95

74 0.48 0.50 20 8.00 0.03 0.0050 30.7 12.1 0.69

75 1.90 1.00 10 8.00 0.03 0.0100 10.1 12.9 1.38

76 2.85 1.00 15 8.00 0.03 0.0150 11.0 4.5 2.53

77 1.90 0.50 15 8.00 0.03 0.0100 10.0 5.1 2.76

78 1.64 0.63 30 8.00 0.03 0.0100 25.2 9.5 2.03

79.25 0.95 1.00 20 0.73 0.03 0.0150 11.7 6.7 1.46

79.5 0.95 1.00 20 0.48 0.03 0.0150 11.3 6.9 1.46

401 4.76 1.00 20 8.00 0.03 0.0150 11.5 4.7 3.27

402 5.71 1.00 20 10.00 0.03 0.0200 9.5 8.5 4.79
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regime. For comparison, the Perlin et al. (2005) measure-

ments are apparently made in a capped regime, and they

also observe enhanced turbulence during downwelling.

At larger s (.0.3 in Fig. 3), the boundary layer

structure is distinctly different in that hq and hrr diverge

for mean conditions. There is an inner, more strongly

stratified region with thickness hrr and an outer, weakly

stratified region (identified with hq) that is still some-

what turbulent and that joins smoothly to the interior

(Fig. 4, dashed line). The difference between hq and hrr

grows as s increases over the range of 0.3 , s , 1, but the

difference decreases slightly for larger s. The inner

boundary layer (Figs. 6a,b) increases from zero thick-

ness at the start of the upwelling phase of each cycle, is

relatively constant for an interval, and then briefly van-

ishes late in the downwelling phase. As MR96 (see their

Fig. 9) point out for their calculation in this parameter

range, a constant, steady shear sets up quickly in the outer

boundary layer (Fig. 4, right, shows its mean), and we find

its magnitude to be consistent with the time-mean along-

isobath flow in the outer layer being geostrophically

balanced. Effectively, the outer boundary layer flow is

a sum of the oscillating interior flow plus a steady, uni-

formly sheared, geostrophically balanced mean flow

(between 8 and 20 m in Fig. 4, dashed line). The physical

situation is clarified by Figs. 6a,b. After the first cycle,

downwelling (e.g., days 4–6, 8–10, etc.) flow is weak but

associated with a thickening layer. During the upwelling

phase (e.g., days 6–8, etc.), the boundary layer flow is

stronger and more concentrated near the bottom. Eddy

viscosity in the inner boundary layer (Fig. 6c) is smaller

than in the capped regime (about 20 cm2 s21 maximum

versus 100 cm2 s21 in Fig. 5c for these two examples)

and confined to the bottom 5 m. Above this depth range

of obvious Ekman transport, at heights 8–20 m above

the bottom, the main u features (Fig. 6b) are oscillations,

grading slightly in phase vertically, with a period of about

0.39 days (compared to the inertial period of 0.72 days).

These oscillations are also very evident in the eddy vis-

cosity (Fig. 6c), where, once per cycle, there is a burst of

turbulence that lasts about 0.05 days [these bursts show

as nearly vertical streaks for 8 m , z , 20 m in (6c)]. At

other times, turbulence is negligible in the outer part of

the boundary layer. Steady downwelling initial-value

FIG. 3. Summary plot of model runs with a constant forcing period of 4 days (s 5 0.18), v0 5

20 cm s21, and varying s: (top) hq (circles) and hrr (3). Solid lines represent analytical ex-

pressions (19) (capped regime) or (23) (divided regime) for the outer boundary layer thickness.

The dashed line is the analytical expression hi for hrr [in (30a)]. (middle) Amplitude of the

computed major axis of bottom stress (circles) and analytical expression (36), equating hu*Ai2
to major-axis stress amplitude, and (bottom) mean along-isobath velocity contoured as

a function of height and s are shown. Negative values are shaded, and the contour interval is

4 cm s21.
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numerical experiments with larger s also show these

boundary layer oscillations (Part I). The oscillating

boundary layer regime where there are distinct inner

and outer boundary layers (hq and hrr diverge) is called

the ‘‘divided’’ regime. For comparison, the time-de-

pendent runs in MR96 appear to be in the divided re-

gime, whereas those of Romanou and Weatherly (2004)

are in both the capped and divided regimes.

It is only in this divided regime that the bottom stress

begins to decrease noticeably with s (Fig. 3, middle), as

might be expected when buoyancy arrest is effective. The

time series of bottom stress (not shown) always remain

essentially symmetric between upwelling and downwel-

ling phases, so the mean bottom stress is always small

(less that about 0.02 dyne cm22) for all runs. A substantial

mean flow develops nonetheless (Fig. 3, bottom), and this

is treated in section 4g.

Another way to view the model results is to hold s

constant at 0.5 and to vary the nondimensional frequency

s 5 v/f (Fig. 7). Again, the two different boundary layer

structural regimes are found. As frequency approaches

zero, the boundary layer is divided, the bottom stress

amplitude decreases, and a substantial mean flow

(,26 cm s21) develops in the outer boundary layer. At

higher frequencies, the boundary layer is capped, the

cross-shelf Ekman transport excursions become smaller,

and buoyancy arrest ceases to be important. For s . 0.5,

the results closely resemble those in the flat-bottom case

in that hq and hrr become identical and the stress de-

creases markedly near the effective inertial frequency

v 5 f* . f. This shift can be readily justified by consid-

ering the governing Eq. (1) in the absence of eddy vis-

cosity, so that free oscillations are found for

v2 5 f 2 1 a2N2 5 f 2(1 1 s2) [ f *2. (14)

These motions, noted previously by MR96, are essen-

tially internal gravity waves with their crests parallel to

the bottom. Very often, in calculations such as those in

FIG. 4. (left) Mean (over the last 4-day forcing cycle) density and (right) total along-isobath

velocity for runs with v0 5 20 cm s21 and s 5 0.1 (run 42: solid curves, having a distinct cap in

the density) or s 5 1.5 (run 46a: dashed curves). These runs are indicated by solid vertical bars in

Fig. 3. The layer depths hq (height of no mixing) and hrr (height of maximum density second

derivative) are labeled for the s 5 1.5 (dashed line) case. The dotted line indicates the initial

density profile.
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Fig. 6 (where f* for s 5 1.5 corresponds to a period of

0.40 days), the oscillations occur at a frequency slightly

higher than f* and the oscillations have a vertical phase

gradient (tilt in Fig. 6) inconsistent with the derivation of

(14). This can be rationalized by considering (1) with

a constant, uniform eddy viscosity: vertical phase vari-

ations and higher frequencies become possible. Given,

however, the extremely intermittent eddy viscosity when

these ‘‘buoyancy oscillations’’ are present in model runs

(e.g., Fig. 6c), it is clear that a constant eddy viscosity

rationalization is suggestive at best.

To quantify phenomenology in the boundary layer

beneath oscillating interior flow, we parameterize the

boundary layer thicknesses (both hq and hrr) as a func-

tion of the important nondimensional parameters s, d,

and s for the three cases: capped regime, divided regime

outer, and divided regime inner (sections 4b–d). A cri-

terion is then developed to define when the capped and

divided regimes should prevail (section 4e). Once the

expressions for the boundary layer thicknesses are found,

the bottom stress arrest is treated (section 4f) and the

inherent rectified flows are described (section 4g).

FIG. 5. Results from model run 42 (4-day period, s 5 0.1 and v0 5 20 cm s21) as a function of

height and time: (a) density (gm cm23), (b) cross-isobath currents (cm s21), and (c) model eddy

viscosity (cm2 s21). For clarity, only the first 12 days of the run are shown.
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b. The capped regime boundary layer thickness

We seek an expression hC for the boundary layer

thickness in the capped oscillating regime where hq and

hrr are virtually equal. This regime appears in all our

runs with superinertial forcing frequencies and in some

subinertial cases with, for example, smaller s. Because

the boundary layer is capped, we assume that its thick-

ness is governed by a bulk Richardson number criterion

(as is the case over a flat bottom). By analogy with the

surface mixed layer (e.g., Niiler 1975), we expect that the

boundary layer thickness is set at the moment when

dr/(dv)2 is a minimum.

At subinertial frequencies, the velocity jump dv is

dominated by the cross-isobath component. If, for the

purposes of illustration, we take the bottom Ekman

transport to vary sinusoidally, then

dv ’ (hU
E
i/hC) sin(vt) (15a)

FIG. 6. As in Fig. 5, but for Results from model run 46a (4-day period, s 5 1.5 and v0 5

20 cm s21). Although the maximum value of eddy viscosity is about 26 cm2 s21, the scale has

been clipped so as to make the transitory eddy viscosity peaks in the upper boundary layer visible.

APRIL 2010 B R I N K A N D L E N T Z 645



and [by vertically integrating (1c)]

dr ’�1

2
hCr

Iz
1 (hU

E
i/hC)ar

Iz
cos(vt), (15b)

where the first term on the right-hand side of (15b) is due

to entrainment and the second is due to upslope or

downslope transport. It is then straightforward to mini-

mize the ratio dr/(dv)2 and show that its minimum occurs

at roughly t 5 p/(2v), the time when dv is a maximum, and

where dr is near its mean value, dr ’ 2hCrIz/2.

At superinertial frequencies, buoyancy advection is

less important and again the second term on the right-

hand side of (15b) is not important. Thus, the thickness

of the capped boundary layer at any frequency is gov-

erned (now using the total scalar shear) by

R
b

5
ghC min[dr/(dv)2]

r
0

’�1

2

ghC4

r
Iz

[r
0
( hU

E
i

�� ��2 1 hV
E
i

�� ��2)]
. (16)

We then repeat the approximations of section 3a but ac-

counting for the sloping bottom. Specifically, the effective

inertial frequency changes from f to f* and so the esti-

mated unarrested friction velocity (13) over a sloping

bottom is corrected to

hu*i5 b
1
c1/2

D v
0
F*(v), (17a)

where, generalizing (13b),

F*(v) 5
1

2
(2� e�lj f*1vj/ f* � e�lj f*�vj/ f*). (17b)

Using the depth-integrated form of (1), with sinusoidal

stress variations,

hU
E
i’� f hu*i2

( f *2 � v92)
and (18a)

hV
E
i’� iv*hu*i2

( f *2 � v92)
, with (18b)

v* 5 v(1� s2/s2) (18c)

and (16), we obtain (for small r)

hC ’ chu*i( f 2 1 v*2)1/4[( f *2 � v2)2
1 4r2v2]1/4N�1/2,

(19)

FIG. 7. Boundary layer behavior as a function of nondimensional frequency for s 5 0.5 and

v0 5 20 cm s21: (top) boundary layer thickness. Computed results are shown by 3s (hrr) or circles

(hq), and the solid lines represent analytical expressions for the outer boundary layer thickness

(19) (capped regime) and (23) (divided regime). The dashed line is hi, the fit for hrr [in (30a)].

(middle) Amplitude of the major-axis bottom stress (circles) with analytical expression (36)

and (bottom) mean computed along-isobath velocity contoured as a function of height and s 5

v/f are shown. Negative values are shaded, and the contour interval is 2 cm s21.
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a form very similar to the flat-bottom case (11). The

sloping bottom enters (19) through the s dependence in

f* and v* and through the expression for hu*i, which

decreases near v 5 6f* (rather than 6f). In the capped

regime, computations show that the bottom stress is

undiminished by buoyancy arrest (e.g., Figs. 3, 7, middle

panels) so that the hu*i value associated with the capped

boundary layer thickness (17) likewise does not account

for arrest.

A sequence of 17 numerical experiments in the cap-

ped regime (Table 2, runs where hq and hrr agree to

within about 1 m) shows that the flat-bottom values of

b1, c, and l continue to hold. The correlation between hq

and hC is 0.95 with an rms error of 2.4 m. The numerical

results show a slight (about 1 m or less) sensitivity of hq

to initial conditions, and this sensitivity is an indication

of the inherent scatter of these calculations. The ana-

lytical expression for capped boundary layer thickness

(19) is shown in Fig. 3 (top) for s , 0.3 and in Fig. 7 (top)

for s $ 0.5.

c. The divided boundary layer outer thickness

The outer boundary layer thickness in the divided re-

gime is identified with hq, the height where time-averaged

turbulence vanishes. Stronger stratification is typically

found in an inner boundary layer with z , hrr, which is

treated in section 4d. The numerical model runs (e.g.,

Figs. 6a,b) show that the outer boundary layer thickness

is roughly set during the first downwelling-favorable

excursion of the interior velocity, often before bottom

stress is decreased by buoyancy arrest. That this thick-

ness should not decrease after the first cycle is consistent

with the idea that, once water is mixed vertically, there is

no mechanism in this one-dimensional model to restore

the stratification to its initial value. If the upwelling phase

occurs before the downwelling, a shallow initial boundary

layer is quickly erased during the subsequent growth of

the thicker downwelling layer. After the initial thicken-

ing during the first cycle, the outer boundary layer still

thickens gradually, at an ever-decreasing rate, evidently

in conjunction with shear caused by the pseudoinertial

oscillations.

During the initial downwelling phase, the weakly strat-

ified boundary layer extends all the way to the bottom,

and the entire layer is linearly stratified with the same

gradient Richardson number RiD that characterizes

the steady downwelling bottom boundary layer (Part I).

Thus, if the outer boundary layer thickness is ho (where

superscript o stands for ‘‘outer’’), the change in the ver-

tical integral of rE over the total depth of the bound-

ary layer at the end of the first downwelling half

cycle is

D

ð
r

E
dz 5 r

Ez

ð
(z� ho) dz 5

r
Ez

ho2

2

 !
. (20)

The boundary layer density gradient rEz is found by

assuming a constant gradient Richardson number

Ri 5�
g(r

Iz
1 r

Ez
)

(r
0
v2

Ez)

and geostrophy [(1a) with mixing and time dependence

neglected] in the outer boundary layer. We obtain

r
Ez

5�
r

Iz
(�1 1 G)

(Ris2)

5�r
Iz

/G and (21a)

G 5
[1 1 (1 1 4RiDs2)1/2]

2
, (21b)

where the positive root is chosen in the quadratic solu-

tion for rEz so that stratification is weaker in the

boundary layer. The second equality in (21a) comes

simply from algebraic manipulation of the first equality.

Empirically, we find RiD 5 0.7, as in Part I.

By integrating (1c) vertically (from the bottom to

a height greater than the boundary layer thickness) and

temporally (over a quarter cycle), we find that the time

change in vertically integrated density is

D

ð
r

E
dz 1 hU

E
iar

Iz
/v 5 0, (22)

where the boundary layer transport amplitude hUEi is

given by (18a) (it is reasonable to drop the r2 term in the

expression for hUEi, because it is only important for

frequencies near the pseudoinertial and the divided re-

gime generally occurs at subinertial frequencies; see

section 4e). The applicable u* amplitude here is given by

(17), which accounts for the shift in effective inertial fre-

quency but not for buoyancy arrest. That is, the change

in integrated boundary layer density is effected by the

initial, unarrested Ekman advection so that, from (20),

(21a), and (22),

ho2

5�
2hU

E
iaG

v
5

2hu*i2 f aG

[v( f *2 � v2)]
. (23)

The Ekman transport formulation used here assumes

that bottom stress has not been reduced by buoyancy

arrest; however, this is not always the case. If bottom

stress, hence Ekman transport, is arrested, the down-

slope excursion in the boundary layer is constrained so

that the boundary layer thickness remains bounded as

v / 0. Thus, we require that the outer boundary layer

can never reach a thickness greater than that of the steady

limit, where bottom stress is completely arrested (Part I):
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ho # ho
max 5

v
0

�� ��G
(sN).

(24)

Expressions (23) and (24) were evaluated using 36 di-

vided regime numerical model runs (delineated using

the criterion of section 4e) and were found to agree with

hq with a correlation of 0.95 and an rms difference of

3.2 m (out of an hq range of roughly 32 m). Expressions

(23) and (24) were used to generate the solid lines in

Figs. 3 and 7 (top panels) for s . 0.35 and s , 0.5, re-

spectively.

d. The divided boundary layer inner thickness

The typical structure of the time-mean bottom bound-

ary layer in the divided regime is sketched in Fig. 8 (solid

line), which can be compared to an actual model run in

Fig. 4 (dashed line). The outer part of the mean boundary

layer is weakly stratified (as described in section 4c), but

the inner part of the boundary layer is more strongly

stratified and often has a distinct bottom mixed layer.

During the maximal downwelling excursion of the Ek-

man transport, the inner boundary layer vanishes, and the

near-bottom density is given by rMD(z), the dashed line in

Fig. 8. At this moment, the vertically integrated density

change (relative to the mean density), associated with

downslope transport, must be [from (22)] associated with

boundary layer advection,

D

ð
r

E
dz 5

hUA
Eiar

Iz

v
, (25)

where the integral represents the shaded area on Fig. 8.

Here, hUE
Ai is the Ekman transport amplitude, where its

reduction resulting from buoyancy arrest has now been

accounted for [the expression for hUEi in Eq. (18) does

not account for buoyancy arrest]. In contrast, during the

maximal upwelling excursion, the strongly stratified in-

ner boundary layer has a thickness of hrr , hq, and the

bottom density substantially exceeds the initial density

(that obtained by extrapolating the interior density

gradient toward the bottom; the dashed–dotted curve in

Fig. 8). Averaged over a cycle, the bottom stress van-

ishes to a good approximation, so we take the bottom

geostrophic mean velocity to be zero. Geostrophy [(1a)

time averaged and neglecting the stress term] then im-

plies that the time-mean boundary layer density rE ’ 0 at

the bottom. Also, averaged over a cycle, there is a well-

defined bottom mixed layer of thickness hML. We use

this information to create an analytical estimate hi for

the inner boundary layer thickness hrr.

The finite stratification in the outer part of the inner

layer (i.e., where hML , z , hrr) is found to be governed,

over a time average, by the same gradient Richardson

number RiU 5 0.4 that applies in the steady upwelling

case (Part I). Thus, the difference in density between

heights hML and hi is simply

r(z 5 hML)�r(z 5 hi) 5�(hi � hML)r
z

5�(hi � hML)r
Iz

(1 1 L�1), (26a)

where

L 5
[�1 1 (1 1 4RiUs2)1/2]

2
. (26b)

The expression for rEz used in (26) is obtained by fol-

lowing the derivation of (21a), except that the negative

root is taken in the quadratic solution so that stratifica-

tion is enhanced in the boundary layer. The constraint

that rE ’ 0 at the bottom (equivalent, through geos-

trophy, with there being no mean flow at the bottom)

allows estimation of the terms in (25): specifically,

D

ð
r

E
dz ’

1

2
[dr(z 5 0) 1 dr(z 5 hML)]hML

1
1

2
(hi � hML)dr(z 5 hML), (27)

where (using the diagram and knowledge of density gra-

dients that are governed by constant gradient Richardson

numbers RiD and RiU in the inner and outer boundary

layers)

dr(z 5 0) 5 r(z 5 0)� rMD(z 5 0) 5 �hor
Iz

/G and

(28a)

FIG. 8. Schematic of a typical divided bottom boundary layer mean

density structure.
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dr(z 5 hML) 5 r(z 5 hML)� rMD(z 5 hML)

5�(hi � hML)r
Iz

/G� hMLr
Iz

. (28b)

We now express the actual (buoyancy arrest–decreased)

bottom Ekman transport in terms of the unarrested

transport as

hUA
Ei5 uhU

E
i (29a)

or, equivalently,

hu*Ai5 u1/2hu*i. (29b)

We add superscript A to the symbols UE and u* as a re-

minder that these quantities have been reduced by buoy-

ancy arrest. The functional form for u is treated in section

4f. It is then straightforward to use (25)–(29) to obtain a

quadratic expression for hi. For s , 0.5, it is a reasonable

approximation to take L� 1, in which case

hi ’
1

2
ho(u 1 L/G) and (30a)

hML ’ hi � hoL/G. (30b)

We also impose the constraint that hML $ 0. Note that,

for L / 0 (small s), either (26) or (30b) imply that hML 5

hi: that is, the inner boundary layer becomes a capped

mixed layer. In practice, the greatly simplified expres-

sions in (30) work as well as a more complete solution to

(25)–(29), even for s . 1.

The expressions (30) were evaluated against 36 di-

vided regime boundary layer calculations, where hi was

compared to hrr and hML to a bottom mixed layer

thickness. For this comparison, the model bottom mixed

layer was defined as the height at which density changes

2 3 1028 gm cm23 relative to the bottom density. Ex-

pression (30a) agrees with hrr to an rms error of 1.9 m

and with a correlation of 0.84. The comparable numbers

for the analytical mixed layer estimate (30b) are 2.8 m

and 0.78. Expression (30a) was used to generate the

dashed lines in Figs. 3 and 7 (top panels).

e. Boundary layer regimes

The transition between the capped and divided bound-

ary layer regimes occurs when the stable cap resulting

from entrainment is overcome by gravitational insta-

bility because of the downslope Ekman layer advection.

Once this occurs, an outer boundary layer with constant

gradient Richardson number RiD forms and reaches

height ho. When the bottom Ekman transport returns to

the upslope direction, a transitory inner boundary layer

of thickness hi forms, and this is reflected in the mean

over a cycle (Fig. 8).

The transition between the capped and divided re-

gimes occurs when the capped and divided outer bound-

ary layer thicknesses become equal: that is, when

ho 5 hC (31a)

so that, from (19) under the low-frequency assumption

that f*2� v*2, and (23),

2hU
E
iaG

v
5

c2hU
E
i

N
. (31b)

Thus, the transition is expected to occur when

v

(aNG)
5

s

(sG)
5

2

c2
. (31c)

The regime transition is demonstrated by Fig. 9, which

shows the ratio hrr/hq as a function of s/(sG). This dis-

tinguishes the regimes because, in the capped case, the

two boundary layer definitions coincide but, in the di-

vided case, the two layer definitions differ sharply (e.g.,

Figs. 3, 7). We find that the regime transition occurs for

s/(sG) near 0.68, a somewhat larger value than the 0.41

that would be expected using the established value of

c 5 2.2 in (31c). We note that the expression for hC in

(19) is an approximation, where the corrections enter at

order (s/s)2: that is, they grow as the capped–divided

transition is approached. It thus seems possible that this

inconsistency in estimating the actual transition point is

ultimately related to the approximation that the capped

boundary layer density jump is unaffected by advection.

f. Bottom stress

Time series of model bottom stress show that, after

the first cycle of a model run, the stress reaches a periodic

FIG. 9. Numerical model estimates of the ratio of inner to outer

boundary layer thickness (hrr/hq) as a function of s/(sG). The dotted

vertical line, dividing the two regimes, occurs at s/(sG) 5 0.68.
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pattern that is distinctly symmetric between the up-

welling and downwelling phases. No substantial mean

bottom stress is ever detected. In the capped boundary

layer regime, there is no observable reduction in bottom

stress relative to (17); however, in the divided regime,

the friction velocity amplitude is reduced, to varying

degrees, relative to (17). The reduction is consistent with

buoyancy arrest reducing the bottom stress.

We now develop a scaling for the bottom stress re-

duction. Because fluctuating buoyancy arrest is found to

occur at frequencies lower than the pseudoinertial, we

begin with the depth-integrated (over the total boundary

layer thickness), low-frequency filtered versions of (1):

�f V
E

5�
ga

ð
r

E
dz

r
0

, (32a)

V
Et

1 fU
E

5�ty

r
0

, and (32b)

ð
r

Et
dz 1 U

E
ar

Iz
5 0. (32c)

The rationale for these equations is that they remove

near-inertial oscillations but that they retain the physics

of arrest [see Part I; it is worth noting that if Eq. (32) is

taken to represent flow averaged over a period, it is

straightforward to show that, in a steady state, with all

time derivatives equal to zero, there can be no mean

along-isobath stress]. The system (32) is readily reduced

to the single equation,

(1 1 s2)

s2

� �
V

Et
5�ty

r
0

. (33)

The magnitude of the along-isobath boundary layer

transport VE is expected to increase if the interior flow

amplitude v0 increases, and it also ought to increase as

the boundary layer becomes thicker if vE 5 O(v0). Thus,

we conjecture that the magnitude of VEt is given by

jVA
Etj5 �vv

0
ho, (34)

where � is a constant and the boundary layer thickness

ho is given by (23). Recall that ho generally depends on

hu*i, the stress amplitude before buoyancy arrest occurs.

The stress amplitude with arrest is, from (17a) and (29b),

htyi
r

0

5 hu*Ai2 5 [b
1
c1/2

D v
0
F*(v)]2

u. (35)

Because the low-frequency approximation avoids the

near-inertial frequency, it is also consistent here to take

F* ’ 1. Using (23), (34), and (35) in (33) yields

u ’ �(b
1
s)�1 2Gs(1 1 s2)

(ds)

� �1/2

[ �z # 1, (36)

where we have added the constraint (u # 1) that buoy-

ancy arrest cannot enhance bottom stress. This form can

then be used in (29b) or (35):

hu*Ai5 u1/2hu*i5 b
1
c1/2

D v
0
F*(v)u1/2. (37)

The functional form (36) is evaluated using all of the

sloping-bottom runs (Table 2), yielding � 5 0.15, an rms

error for hu*Ai of 0.05 cm s21, and a correlation of 0.98

(Fig. 10). Expression (36) was used to generate the solid

lines in the middle panels of Figs. 3 and 7. The scaling

(36) could also have been obtained simply by making

assumption (34) with the arrested form of (18b) and

assuming that s2/s2 � 1. The present derivation serves

to highlight the nearly geostrophic physics.

g. Rectified flow

Rectified flow having magnitude up to 60% of the

interior amplitude occurs in the model runs (e.g., Figs. 3,

4, 7, 11), but the mean flow is in different directions at

higher and lower frequencies (Fig. 7). Specifically, in the

capped regime, mean flow is positive in the upper part of

the boundary layer but very weakly negative or zero

below (e.g., the solid curves in Fig. 11). In the divided

regime, there is a negative mean flow peaking near z 5 hrr

and then tapering off in the outer part of the boundary

layer (dashed curves in Fig. 11). The two regimes are

treated separately here.

1) CAPPED REGIME RECTIFICATION

In the capped regime (e.g., Fig. 7; s . 0.5), where

either frequencies are relatively high or s is relatively

FIG. 10. Numerical model u* amplitude normalized by the un-

arrested u* amplitude estimated using (17). The horizontal axis is

the arrest parameter z 5 (b1s)21[2Gs(1 1 s2)/(ds)]1/2. The solid line

is the analytical expression for arrest hu*Ai 5 u1/2 hu*i, where u is

given by (36); that is, juj ’ 0.15z # 1.
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small, cross-isobath density transport is rather modest.

At high frequencies, little net water is exchanged up or

down the slope, because the cross-slope particle excur-

sion [proportional to UE/(hv)] is relatively small. At

lower frequencies but with a modest bottom slope, even

substantial cross-isobath displacements do not yield

large density changes. Under these conditions, density in

the bottom boundary layer is governed more by vertical

entrainment than by lateral advection. The total density

(sum of boundary layer and interior components) within

this sharply capped boundary layer is homogeneous and

equal to the initial density averaged over the thickness

of the layer.

If lateral advection can thus be ignored in the buoy-

ancy balance (as in section 4b), the boundary layer com-

ponent of mean density at the top of the layer, z ’ hC, is

about

r
E

(z 5 hC) 5�0.5hCr
Iz

. (38)

Further, we find that, in the upper portion of the bound-

ary layer, the mean turbulent stress divergence terms

are negligible, so the mean along-isobath flow there is

geostrophic. Thus [from (1a) with A 5 0], the geostrophic

component of period-averaged along-isobath flow vE at

the top of the bottom boundary layer is

v
E

(z5hC)5
gar

E
(z5hC)

( f r
0
)

5�
0.5gahCr

Iz

(f r
0
)

50.5sNhC .0

50.5chu*isN1/2( f 2 1v*2)1/4

3[( f *2�v2)2
14r2v2]�1/4. (39)

This is the maximum (as a function of height) possible

geostrophic velocity for this idealization, because it oc-

curs where the density perturbation is maximal. In the

lower half of the capped boundary layer, the mean ve-

locity term becomes negligible, whereas the stress gra-

dient terms become more important. The capped mean

flow structure in Fig. 11 (right, solid line) can thus be

rationalized in light of the importance of geostrophy

versus turbulent stress divergence. Comparing (39) to the

maximum rectified flow for all 17 capped regime numerical

model runs shows agreement to an rms error of about

FIG. 11. Mean (over the last forcing period) conditions for s 5 0.5, v0 5 20 cm s21, and s 5

v/f 5 0.97 (run 65: solid line) or s 5 v/f 5 0.09 (run 67a: dashed line). These frequencies are

flagged by the solid bars in Fig. 7 (top). (left) total density (with the dotted line showing the

undisturbed, initial density) and (right) mean velocity are shown. The heights of vanishing tur-

bulence hq and of maximum density gradient hrr are shown for run 67a (dashed line) in (left).
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1.4 cm s21 (correlation 0.91), compared to a 10 cm s21

mean flow range.

A substantial positive (toward the right as one looks

from shallower water into deeper water in the Northern

Hemisphere) mean flow might be expected with strong

tides and a stratified interior. This rectification differs

from traditional tidal rectification (e.g., Loder 1980) in

that the mean flow depends critically on the presence of

a stratified interior and because the mean flow is dis-

tinctly confined vertically.

2) DIVIDED REGIME RECTIFICATION

During divided regime conditions, the outer boundary

layer (where hq . z . hrr) is weakly stratified compared

to the interior and not strongly turbulent on average.

The associated mean (over an interior velocity period)

along-isobath flow in the outer region is in geostrophic

balance [(1a) with A 5 0] and has a constant gradient

Richardson number, RiD. Thus,

v
Ez

5
f�1gar

Ez

r
0

(40a)

and, using (21),

v
Ez

5
sN

G
. (40b)

Combining these, we obtain, for ho . z . hi,

v
E

5
sN

G

� �
(z� ho). (41)

The rectified flow is negative and the maximum magni-

tude occurs at the lower edge of the outer boundary

layer, z 5 hrr ’ hi. If there is a bottom mixed layer for

z , hi, then there is a weaker positive mean flow similar

to that in the capped case (earlier). Using (41) to esti-

mate modeled extreme (as a function of height) negative

mean along-isobath flow yields an rms difference of

4.3 cm s21 (correlation of 0.81) compared to a range of

numerical model mean flows of 17 cm s21.

5. Broadband forcing

In nature, current fluctuations are rarely monotonic,

as assumed up to this point. Rather, variations occur

over a broad frequency range. The time-dependent buoy-

ancy arrest problem involves nonlinearities through

the variable turbulence (hence boundary layer thick-

ness) and through the quadratic stress form so that it

is reasonable to ask whether results up to this point

change substantially in response to more realistic broad-

band forcing.

We address this question by solving (1) numerically,

starting with a constant initial stratification (N 5 1.3 3

1022 s21, f 5 0.95 3 1024 s21, and cD 5 2.9 3 1023)

and using an observed middepth hourly time series of

continental shelf along-isobath currents for vI. Each run

lasted 100 days. Time series from the Georges Bank

southern flank (e.g., Brink et al. 2009) were used for most

runs. Because these time series were dominated by en-

ergetic M2 tides (amplitude of order 25 cm s21), midshelf

(C3) current records from the central Californian Coastal

Ocean Dynamics Experiment (CODE) area (e.g., Winant

et al. 1987) were used to provide contrasting time series

with less energetic tidal currents. Finally, each model run

was repeated with three bottom slopes: a 5 0 (s 5 0),

0.000 75 (s 5 0.11), and 0.003 75 (s 5 0.53), the nonzero

bottom slope choices being representative of the U.S.

Mid-Atlantic Bight shelf (or Georges Bank) and of the

U.S. Northern California shelf. Runs were done in various

configurations (e.g., with and without mean interior along-

isobath currents included), using a reversed mean current

(i.e., replacing the observed mean current with an equal

and opposite mean), using a linearized bottom stress,

and using low-pass filtered (tides removed) time series.

All model runs are strikingly similar in two regards.

One is that arrest of the steady flow component occurs

over roughly the time scales expected from Part I, so the

later parts of all sloping-bottom model time series have

no mean bottom stress. Second, in all model runs, the

bottom boundary layer continues to thicken with time.

In the flat-bottom runs, the boundary layer deepens only

very slowly after the first 20 days (e.g., about 10% over

about 80 days). For the model runs with a sloping bot-

tom, the boundary layer thickness (as defined by hq)

keeps increasing with each new extreme of downslope

excursion in the bottom boundary layer. Because there

is nothing in the model system (1) that can act to restore

the initial stratification, there is no way for the outer

boundary layer to become less thick. The inner bound-

ary layer presents a more complex time history, because

it comes and goes as upslope flow comes and goes.

Coupling between frequencies occurs through the

nonlinear form of the bottom stress (3), which assures

that, if speeds are decreased in one frequency band

(because of arrest), the bottom stress is decreased at all

frequencies. This stress reduction is explored by con-

sidering model time series of bottom stress and interior

along-isobath velocity. Both time series are Fourier

analyzed (using standard fast Fourier transform tech-

niques) into individual frequencies; then the ratio

R(v) 5
ty

(r
0
b2

1c
D

v
I

�� ��v
I
)

(42)
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is computed frequency by frequency. If the different

frequencies superimpose linearly, then one might ex-

pect, from (17) and (37), that

R(v) 5 uF*(v)2. (43)

Results for two model runs (with hourly Georges Bank

currents, s 5 0 and s 5 0.53) summarize the results (Fig. 12).

For a flat-bottom case with no arrest (left panel), the

stress ratio R computed directly from the model time

series (solid line) agrees fairly well with the analytical

form (43), indicating that stress at individual frequencies

can be treated independently. On the other hand, for s 5

0.53 (right panel), actual model bottom stress is reduced

relative to (43) at nearly all frequencies (i.e., stress even

decreases at frequencies well above the inertial). A sim-

ilar model run with s 5 0.11 (not shown) gives a more

modest stress reduction but still over all frequencies.

These results are typical of all model runs with quadratic

bottom stress, in that stress reduction occurs over a fre-

quency range much larger than would be expected from

(43). In contrast, model runs with a linearized bottom

stress (which still allows arrest but does not allow fre-

quency coupling through the bottom boundary condition)

are much more consistent with (43) holding frequency

by frequency. For example, a run similar to that of the

right panel in Fig. 12 (s 5 0.53), but with linearized

bottom stress, largely eliminates the stress decrease rel-

ative to (43) for periods shorter than about 1.5 days

(frequencies greater than 5 3 1025 s21). Because linear-

izing the bottom stress appears to make (43) become valid,

it seems likely that any coupling associated with mixing is

less important for explaining the failure of (43). Thus, over

a sloping bottom, buoyancy arrest plus quadratic bottom

drag combine to weaken stress at all frequencies.

6. Conclusions

In response to oscillating interior along-isobath flow

in a stratified ocean with a sloping bottom, the bottom

boundary layer takes on one of two general structures.

For small s 5 aN/f or large s 5 v/f, there is a bottom

mixed layer with a sharply defined density cap. The

layer’s thickness decreases slightly as s increases (Fig. 3;

Table 3), and it approaches the flat-bottom thickness as s

becomes small. This well-mixed case, which is qualita-

tively similar to results with a flat bottom, is referred to

FIG. 12. Stress ratio (42) as a function of frequency for model runs driven by observed

Georges Bank 30-m along-isobath currents: run (left) 308 and (right) 309. The solid line is for

results calculated directly from Fourier-analyzed model output time series, and the dashed line

is the analytical expression (43), which is only valid to the extent that results at different fre-

quencies can be linearly superimposed.
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as the capped regime. For large enough s or small enough

s, the boundary layer structure, averaged over a forcing

period, changes dramatically so that there is a weakly

stratified outer boundary layer reaching height hq (ap-

proximated by ho) above the bottom and a strongly

stratified inner boundary layer (Table 3, the divided

regime). In practice, we find that the transition between

the capped and divided regimes occurs when s/(sG) ’

0.68. This criterion effectively defines what is meant by

small or large s or s.

Buoyancy arrest (i.e., the neutralization of bottom

stress) comes into play only in the divided regime, and

the decrease in stress amplitude is governed by (36).

Buoyancy arrest becomes more important for lower fre-

quencies (small s) and larger drag (larger d), but the

strongest dependence is on the slope Burger number s. It

is straightforward to use (36) to estimate when one might

expect to observe buoyancy arrest for fluctuating flows

in the ocean. The inequality implies that there is no ar-

rest at all if z , 6.6. Consider the representative exam-

ples of summertime continental shelf conditions in the

Mid-Atlantic Bight and off the coast of Oregon. In both

cases, d ’ 0.3 and f ’ 1 3 1024 s21; however, for the

Mid-Atlantic Bight s ’ 0.1 and for Oregon s ’ 0.5. The

arrest cutoff periods differ dramatically: in the Mid-

Atlantic Bight, arrest only occurs for periods longer than

about 27 days, whereas off Oregon arrest begins at pe-

riod of about 1.5 days. Further, for Oregon, the bottom

stress amplitude is expected to fall to half its unarrested

value at a period of about 6 days (the comparable number

is 108 days for the Mid-Atlantic Bight). The strong s de-

pendence in (36) thus suggests that, on the gently sloping

Mid-Atlantic Bight shelf, buoyancy arrest is negligible

for most fluctuating flows (because stratification is ab-

sent during the winter) but that, on the Oregon shelf,

arrest is important for variations having ‘‘weather band’’

and longer time scales.

Even though the asymmetry of upwelling and downw-

elling Ekman transport does not induce a mean bottom

stress, mean flows do develop in the bottom boundary

layer. In the capped regime (i.e., for higher frequencies;

s . 0.5 in Fig. 7, or see Fig. 11), a bottom mixed layer

always develops, and its density is governed primarily by

entrainment. In this case, a positive mean along-isobath

flow develops. This flow is approximately in geostrophic

balance in the upper part of the bottom mixed layer;

however, as the bottom is approached, dissipative effects

become important and negate any rectification. In the

divided regime (i.e., for lower frequencies; s , 0.3 in

Fig. 7), a strong (up to order 10 cm s21) negative, geo-

strophically balanced, along-isobath mean flow develops

above the bottom mixed layer but within the outer

boundary layer.

Uncertainty remains as to how well these present re-

sults would apply to the actual three-dimensional ocean.

For example, in our model, the boundary layer thickness

can only increase with time. However, in nature (e.g.,

Lentz and Trowbridge 1991; Perlin et al. 2007), actual

boundary layer thickness both increases and decreases

with time, evidently as a result of interior advective

processes that cannot be included in our nearly one-

dimensional model. This question of the enduring versus

transitory nature of the boundary layer thickness reflects

on many of our results, including mean flow generation

and stress modification. Our present results, then, should

probably be taken as realistic only over time scales less

than those over which stratification is reestablished by

lateral advection.
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