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ABSTRACT

The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to

moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This

paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave

propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In

contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and

consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic

withO(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the

along-valley flows Lx. In the upwelling regime Lx depends on the valley width Wc and the wavelength llw of

the coastal-trapped lee wave arrested by the along-shelf flowUs. In the downwelling regimeLx depends on the

inertial length scale jUsj/f and Wc. The along-valley velocity scale in the upwelling regime, given by
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is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and Hc are the shelf and valley

depth scales, respectively, and f is theCoriolis parameter). The velocity scale in the downwelling regime, given by
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is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and

can be useful for observational studies of along-valley transports. The work provides a framework for in-

vestigating cross-shelf transport induced by irregular shelf bathymetry and calls for future studies of this type

under realistic environmental conditions and over a broader parameter space.

1. Introduction

Motivated by observations in the Hudson Shelf valley

(HSV), this study aims to understand the dynamics con-

trolling the cross-shelf (along valley) flow in an idealized

shallow shelf valley. Observations in HSV show an asym-

metrical flow response to winds of different directions:

strong up-valley flow under eastward winds and much

weaker down-valley flow under westward winds (Lentz

et al. 2014). Numerical model simulations of an ideal-

ized shelf valley presented in Zhang and Lentz (2017,

hereinafter Part I) describe a similar pattern of asymmet-

rical responses of the valley flow to along-shelf winds of

opposite directions. When the wind forcing opposes the

phase propagation of coastal-trapped waves (CTWs), re-

ferred to as the upwelling regime, a persistent, strong on-

shore upwelling flow is generated in the valley and occupies

most of the valley cross section.When thewind forcing is in

the same direction as the phase propagation of CTWs, re-

ferred to as thedownwelling regime, thewind-driven along-

shelf flow is deflected onshore over the eastern valley slope

and then offshore over the western valley slope. This weak

symmetric flow with respect to the valley axis results in a

net offshore transport in the valley that is very weak com-

pared to the onshore transport in the upwelling regime.
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The analysis in Part I provides a physical explanation

of the asymmetry between the upwelling and down-

welling responses. In the upwelling regime the strong

onshore flow results from the arrest of CTWs by the

along-shelf flow and the generation of a coastal-trapped

lee wave by the valley bathymetry. In the downwelling

regime, the initial flow perturbation induced by the

valley bathymetry radiates away from the source region

because the shelf flow is in the same direction as CTW

propagation and consequently does not trap CTWs.

One key property of the valley flows described in this

study is the associated Rossby number:
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being O(1). Here, Us is the shelf velocity and defined

here as the depth- and cross-shelf-averaged along-shelf

velocity on the ambient shelf, f is the Coriolis parameter,

and Wc is the valley width scale (see Table A1 in the

appendix for the meaning of all notations used in this

paper). The nonlinear momentum advection of the

valley flow is thus important.

Previous studies have shown that the flow responses in

deeper slope canyons to ambient along-isobath currents

of opposite directions are also asymmetrical: strong up-

canyon flow develops when the ambient current opposes

the phase propagation of CTWs, and the flow tends to

follow isobaths with weak offshore transport when the

along-slope current aligns with the CTW propagation

(e.g., Allen and Durrieu de Madron 2009; Kämpf 2006;

Klinck 1996; She and Klinck 2000). Because of the

similarities of the canyon physical setup to the shelf

valleys, the mechanism of CTWs being arrested at the

bathymetric perturbation and inducing persistent on-

shore flow is expected to be applicable to slope canyons.

There are also differences between slope canyons and

shelf valleys. One aspect is their different depth Hc,

which causes the influence of stratification to be differ-

ent, as reflected in the Burger number:
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Here, N is the buoyancy frequency. The S in deep slope

canyons is often large, and stratification likely plays a

major role in determining the canyon flow. The opposite

is true for shallow shelf valleys.

Valleys and canyons provide important pathways of ex-

changing materials across continental shelves or between

continental shelves and the open ocean (e.g., Bosley et al.

2004; Connolly and Hickey 2014; Crockett et al. 2008;

Harris et al. 2003; Hickey et al. 1986; Michels et al. 2003;

Williams et al. 2006). It is important to estimate the bathy-

metrically induced cross-shelf transport. Based on scaling

of the momentum balance, Allen and Hickey (2010) pro-

vided a scale of the onshore transport of the subsurface

offshore water in a slope canyon in the upwelling regime:
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Here, Usc is the along-slope velocity upstream of the

canyon; Wsc is the width of the canyon at the shelf break;

Lsc is the length of the canyon (in the cross-slope di-

rection); F 5 c1Ror/(c2 1 Ror), Ror 5 Usc/(fRc) is the

Rossby number defined based on Rc, the radius of curva-

ture of the shelfbreak isobath at the upstream corner of the

canyon; and c1 and c2 are empirical constants of order one.

Kämpf (2007) examined the parameter dependence of

the up-canyon transport in the upwelling regime in nu-

merical simulations and empirically obtained a scale of

the transport:
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whereHsc is the canyondepth relative to the shelf, and both

f0 and a are constants with empirical values obtained from

the sensitivity simulations as f05 1.43 1024 s21 and a’ 32.

Equations (3) and (4) depict different parameter de-

pendences, except for the dependence on N. The

transport in both formulas depends on N21, implying

infinite onshore transport at the extreme condition of

N 5 0. This is not a major issue for their application in

slope canyons, as the water column in deep canyons is

always stratified. However, stratification in shallow shelf

valleys can disappear at times. Any scaling that de-

scribes the along-valley transport would have to be able

to accommodate the condition of no stratification.

A corresponding systematic quantification of the along-

canyon transport in the downwelling regime is lacking,

as fewer studies exist on the topic. The few existing stud-

ies examine the general influence of winds, stratification,

and flow characteristics, as represented by Rossby and

Burger numbers, on the along-canyon transport (e.g., Skliris

et al. 2002; Spurgin and Allen 2014). Studies specifically

on downwelling transport in slope canyons often focus

on topographically induced dense water cascading (e.g.,

Chapman and Gawarkiewicz 1995; Wahlin 2002).

This paper, the second of two parts, examines the

dynamics that control the strength of the along-valley

flow in the respective upwelling and downwelling re-

gimes using numerical model simulations of idealized

shallow shelf valleys based roughly on HSV. Simplified

vorticity and momentum balances of the valley flow and
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lee-wave dynamics are used to derive analytical scales of

the cross-shelf flows and transports within the valley that

are directly comparable to observations. The derived

scales are compared to results of numerical simulations

of the sensitivity to various parameters.

2. Numerical model

Theregional oceanmodeling system(ROMS;Shchepetkin

and McWilliams 2008) is used in this study. The model

solves the Boussinesq hydrostatic equations of motion

and a density equation. It is set up in a Cartesian co-

ordinate system with the positive x defined as eastward

along shelf, positive y northward-pointing onshore, and

positive z upward (Fig. 1). A rectangular model domain

is used with edge lengths of 920 and 430 km in the x and y

directions, respectively. The model bathymetry, given by
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consists of an idealized shelf, slope, and a Gaussian-

shaped shelf valley located at the along-shelf midpoint

of the model domain. Here, hc 5 10m is the coastal

depth at the northern boundary; hf 5 75m is the shelf

depth scale; lf 5 110.3 km is the shelf width scale;

yp 5 2151.3 km is the y coordinate of the center of the

slope; lp 5 16.5 km is the slope width scale; hp 5 465m

is the slope depth scale; Lc, Wc, and Hc are the valley

length (cross-shelf direction), width (along-shelf di-

rection), and depth scales, respectively; and x0 5 0 and

y0 5 265.3 km are the coordinates of the valley center.

Control values of the parameters are chosen to mimic

the shelf, slope, and valley bathymetry around HSV. To

remove ambiguity, we define the edge of the valley

where the depth drop relative to the undisturbed shelf is

0.02Hc. The total width of the valley is thus (Fig. 1d)

W
T
’ 4W

c
. (6)

The model domain is discretized into horizontal

rectangular grids. The grid spacing in a central area of

160 km 3180km that covers the valley is 250 and 300m

in the along- and cross-shelf direction, respectively, and

it gradually increases outward reaching 3 km on the

boundaries. In the vertical, the model employs a terrain-

following grid with 80 layers. A closed wall condition is

used on the northern boundary. The other three lateral

boundaries are open with Chapman (1985), Flather

(1976), and zero-gradient conditions for surface eleva-

tion, barotropic velocity, and baroclinic variables,

respectively. A 100-km-thick wave-absorbing sponge

layer is employed on all open boundaries. No explicit

horizontal viscosity or diffusivity is used in the

interior domain.

FIG. 1. (a) Model valley bathymetry in the control scenario; (b),(c) side-view of the bathymetry; (d) along-shelf

section of the bathymetry at y 5 252 km. The grid in (a) is 10 times coarser than the model grid in both x and y

directions. The gray lines in (b) and (c) are the cross-shelf bathymetry outside of the valley, and the black lines are

the cross-shelf bathymetry along the valley axis.
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The model is initialized with horizontally uniform

stratification of a constant buoyancy frequency N in the

surface 200m and N 5 0.001 s21 below that. In the

control cases, N 5 0.01 s21 in the surface 200m; steady

uniform along-shelf wind stress of ts 5 60.2Nm22 is

applied on the surface for the upwelling and down-

welling simulations, respectively; and quadratic bottom

drag is applied with a coefficient Cd 5 0.003. There is no

surface or bottom buoyancy flux. The simulations all

start from zero flow and are run for 10 days. The re-

solved shelf flow reaches a quasi-equilibrium state at

Day 5 (see Fig. 7 in Part I). While the stratification

continues evolving slowly after day 5, it does not sig-

nificantly affect the shelf and valley flow (see below).

Sensitivity simulations for both the upwelling and

downwelling regimes are conducted to examine the de-

pendence of the along-valley flow on eight parameters:

wind direction, along-shelf wind stress ts, f,N,Wc,Hc, Lc,

and Cd. As this study focuses on shelf valleys geo-

metrically similar to HSV, influences of other parameters

(e.g., shelf depth and shelf slope) are not considered.

Results of the sensitivity simulations provide guidance for

developing and validating the dynamical scalings. In each

simulation series, the value of one parameter is altered

while all other parameters are fixed at the control values

(see Table 1 in Part I for a complete list of model runs

including the Burger and Rossby numbers for each run).

We conducted two additional simulations with no bottom

friction and ts 5 60.1Nm22 to examine the valley re-

sponses to shelf flows of different strengths (see Part I).

There are a total of 84 simulations with 42 in each flow

regime described in this part of the study.

3. Parameter space and sensitivity

a. Parameter space

This study focuses on midlatitude cross-shelf-oriented

valleys similar to HSV; that is, Hc ’ O(10) m, Lc ’
O(10) km,Wc’O(1–10) km, and f’O(1025–1024) s21.

The valleys are long in the cross-shelf direction with the

cross- to along-shelf aspect ratio greater than 1 (i.e.,

Lc . Wc). Because N on a continental shelf is generally

O(1022) s21 or less, the Burger number S of the valley

flow is not large. In the control case, f5 9.373 1025 s21,

Hc 5 30m,Wc 5 5 km,N5 1022 s21, and the initial S’
0.64. The sensitivity simulations together cover a Burger

number range of 0 to 2, and in most of the simulations

(72 out of the 84) the initial S is less than 1. As the

ROMS simulations proceed, mixing gradually reduces

N, which reaches about 80% of its initial value at day 3.

Thus, S decreases slightly over the simulation period.

The small to moderate S indicates that the vertical scale

of the valley influence is similar to or greater than the total

water depth and that the valley width is large compared to

the internal Rossby radius. Specifically, (2) and (6) to-

gether imply that the total width of the valley is about

4 times of the baroclinic Rossby radius when S5 1. Thus,

the valleys considered in this study are generally shallow,

meaning that the shelf flow stretches to the full depth of the

valley and the valley response is largely barotropic. It also

means that the effect of rotation is strong and the influence

of stratification is weak, which are consistent with the re-

sults of the sensitivity simulations (see below). Note that

the moderate decrease of the Burger number in the first

several days of the simulations owing to the temporal

variation of themodel stratification (Figs. 4 and 5 in Part I)

does not change the dynamical regime.

The shelf velocity is normally O(0.1)m s21, so the

Rossby number of the valley flow Ro is generally

O(1). At the equilibrium state of the control simula-

tions, jUsj’ 0.45ms21 and Ro’ 1. The range of Rossby

number covered by the sensitivity simulations is between

0.24 and 3.25. Consequently, the nonlinear momentum

advection of the valley flow is important, and the valley

width is the same order of magnitude as the advection

length scale. Here, because the Coriolis force plays a

primary role (see below), we assume that f21 is the time

scale of the valley flow and that the inertial length scale

jUsj/f, over which the flow feels the rotation, also repre-

sents the length scale associated with the momentum

advection.

b. Dependence of valley flow on wind direction

Winds in reality are often in directions oblique to the

along-shelf direction, which raises the issue of the rela-

tive contributions of the along- and cross-shelf compo-

nents of the wind stress to the valley flow. To examine

the dependence of the valley flow on wind direction, we

analyze two sets of simulations. The first set consists of

12 simulations that are forced by wind stress of the same

strength, 0.2Nm22, but in different directions that are

308 apart. The 12 simulations thus cover the entire

3608 range of wind direction.Wind direction in this study

is defined as the direction winds blow toward, and wind

angle is defined as the degree of clockwise rotation from

north. The second set of simulations is forced by only the

along-shelf component of wind stress with different

strengths.

Comparison within the first set of simulations shows

that valley flows driven by along-shelf winds are much

stronger than those driven by cross-shelf winds. The

velocity field at z 5 225m and t 5 3 days from the

simulations forced by cross-shelf (northward or south-

ward) wind stress of 0.2Nm22 (Figs. 2a,c) show very

weak flows of less than 0.1m s21 both on the shelf and in

the valley. In contrast, simulations forced by along-shelf
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(westward or eastward) wind stress (Figs. 2b,d) show

much stronger flow both on the shelf and in the valley.

The maximum flow speed in the valley is greater than

0.5m s21. The dependence on the wind direction of the

depth-averaged along-valley velocity at x 5 0 (on the

valley axis) and y5 252 km (triangles in Fig. 3a) shows

three groups: (i) for simulations forced by winds with an

eastward component (308 to 1508N) the up-valley ve-

locity is about 0.2m s21; (ii) for simulations forced by

winds with a westward component (21508 to2308N) the

down-valley velocity is,0.05m s21; (iii) for simulations

forced by northward (08N) or southward (21808N) wind

the along-valley velocity is negligible. The difference

between the first two groups is consistent with the

asymmetrical response of valley flow to along-shelf

winds of opposite directions examined in Part I. The

along-valley volume transport over the valley cross

section (22Wc, x, 2Wc, at y5252km) depicts a very

similar pattern (triangles in Fig. 3c).

Comparison between the two sets of simulations

confirms that the along-shelf component of the wind

stress predominantly determines the along-valley flow.

When plotted against the along-shelf component of the

wind stress, the along-valley velocity and transport from

the two sets of simulations collapse (Figs. 3b,d), meaning

that the contribution of the cross-shelf component of the

FIG. 2. Density (color) and horizontal velocity (arrows) at z5225m and t5 3 days from simulations forced by

wind stress of the same strength but in different directions. The thick arrow at the top-left corner of each panel

indicates the direction of the wind forcing, and the gray lines are isobath contours. The velocity scale is given at the

top-right corner of each panel.
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wind stress to the valley flow is negligible. Hereby, we

neglect the influence of cross-shelf winds in this paper,

and the subsequent analysis focuses only on the valley

response to along-shelf winds.

As described in Part I, the valley flow in the down-

welling simulations forced by westward winds takes a

shoreward detour over the valley with a largely sym-

metric pattern with respect to the valley axis (Fig. 2d).

Because of the symmetry, the along-valley velocity av-

eraged over the valley cross section, as indicated by the

along-valley transport (triangles in Fig. 3c; also Fig. 8 in

Part I), is generally very weak. This makes the analysis

of cross-valley-averaged down-valley flow less mean-

ingful. Observations in real valleys often capture ve-

locity at particular sites rather than the cross-valley

average. To make the result more relevant to observa-

tional studies, for the downwelling regime we choose to

investigate the strength of the down-valley flow on the

western slope of the valley, which is of similar strength as

the up-valley flow on the eastern valley slope. Note that

this down-valley flow on the western valley slope in the

downwelling regime is not the counterpart of the up-valley

flow in the upwelling regime that we investigate in this

study. For completeness, the maximum down-valley ve-

locity and the down-valley transport on the western slope

of the valley in all downwelling simulations are also shown

in Fig. 3 (pluses). They are also predominantly determined

by the along-shelf component of the wind stress.

c. Momentum balance

The momentum balances in the control simulations

confirm the importance of the nonlinear momentum

advection. The dominant terms in the along-valley

(cross shelf) momentum balance are the same in the

upwelling and downwelling regimes. In both cases,

the pressure gradient term is initially balanced by the

FIG. 3. Variations of depth-averaged (top) along-valley velocity and (bottom) along-valley transport at y5252 km

with respect to (left) wind direction and (right) along-shelf component of the wind stress at day 3. The blue symbols

in both columns represent simulations forced by wind stress of the same strength (0.2 Nm22) but in different

directions; the red symbols represent simulations forced by only along-shelf wind stress of different strength. The

triangles and circles represent (top) depth-averaged along-valley velocity on the valley axis and (bottom) along-

valley transport averaged over the entire valley cross-section; the pluses represent (top) maximum down-valley

velocity on the western valley slope and (bottom) along-valley transport averaged over the western half of the

valley cross-section in the downwelling simulations.
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Coriolis and acceleration terms and then, after ;1 day,

by the Coriolis and cross-valley advection terms

(Figs. 4b,d,f). The temporal evolution of the momen-

tum balance indicates that, as the geostrophically bal-

anced shelf flow initially enters the valley, the increased

water depth causes the depth-averaged flow to slow down

and results in a Coriolis force that is weaker than the

along-valley pressure gradient force. The excessive along-

valley pressure gradient force then drives a cross-shelf

flow in the valley and creates the along-shelf gradient of

the cross-shelf flow. The cross-valley advection term is

associatedwith the cyclonic flow curvature over the valley

in both regimes (Figs. 2b,d) and starts to increase at

day 1. The cross-valley advection term eventually reaches

about half the strength of the Coriolis term, contributing

substantially to themomentum balance. Hence, the steady

along-valley momentum balance is cyclostrophic in both

upwelling and downwelling regimes: a balance among

the Coriolis, cross-valley pressure gradient, and cen-

trifugal force. The effect of the bottom friction on the

along-valley momentum balance is negligible through-

out the period in both regimes.

On the other hand, the cross-valley (along-shelf)

momentum balances after the initial stage in the two

regimes differ: geostrophic in the upwelling regime and

cyclostrophic in the downwelling regime. In the up-

welling case, it is largely geostrophic with the eastward

Coriolis forcing balancing the westward pressure gra-

dient force (Fig. 4a). Note that, consistent with the

moderate S, the westward pressure gradient is mostly

barotropic and caused by the upward sea level tilt to-

ward the east associated with the arrested coastal-

trapped lee wave (Part I). The contribution of the

bottom friction remains negligible. The cross-valley

momentum balance in the downwelling regime is more

complex (Figs. 4c,e). It is largely geostrophic during the

initial adjustment period of the first day. As the valley

flow adjusts to the bathymetry and becomes symmetric

with respect to the valley axis, both the eastward pres-

sure gradient and westward Coriolis forces decrease

substantially. On the valley axis where the down-valley

flow is weak, the Coriolis term becomes similar in

strength to the cross-valley advection and the wind

stress, and all three terms together balance the eastward

pressure gradient and bottom friction terms. On the

western valley slope where the down-valley flow is rel-

atively strong, the Coriolis term remains relatively large.

Meanwhile, the cross-valley advection of the along-

valley momentum increases with time and gradually

exceeds the eastward pressure gradient force. The effect

FIG. 4. Time series of vertically averaged (top) along- and (bottom) cross-shelf momentum terms at y5252 km

and on the valley (left; center) axis or (right) western slope from (left) upwelling and (center; right) downwelling

simulations forced by eastward and westward winds, respectively.
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of bottom friction increases over time but remains sec-

ondary at day 3. The cross-valley momentum balance on

the western valley slope in the downwelling regime is

thus largely cyclostrophic. Note that although the bot-

tom friction is unimportant inside the valley, it is im-

portant on the ambient shelf and affects the valley

circulation in both flow regimes through affecting the

ambient shelf flow. The bottom drag coefficient is thus

considered in the following sensitivity analysis.

d. Parameters dependence

The valley flow in both the upwelling and down-

welling regimes varies with ts, f, N, Wc, Hc, Lc, and Cd

(Fig. 5). The exact dependences of the along-valley ve-

locity on the parameters differ in the two regimes. But

the signs of the dependence of the along-valley speed

on each of the parameters, except Wc, are the same for

the two flow regimes. For instance, as f increases from

0.3 3 1024 to 1.5 3 1024 s21, the modeled maximum

depth-averaged up-valley velocity in the upwelling re-

gimeVm
u,max increases from 0.12 to 0.5ms21. For the same

change of f, the maximum depth-averaged down-valley

velocity in the downwelling regime jVm
d,minj also increases

but at a different rate, from 0.07 to 0.25m s21. Similarly,

both Vm
u,max and jVm

d,minj increase with increasing Hc, in-

creasing Lc, and decreasing Cd. The trends of V
m
u,max and

jVm
d,minj varying with Wc differ slightly. As Wc increases

from 2.5 to 10 km, Vm
u,max increases from 0.22 to

0.44m s21, and then Vm
u,max decreases to 0.35m s21 asWc

increases further to 20km. Meanwhile, jVm
d,minj increases

monotonically withWc, and it saturates forWc . 10km.

The different changing rates ofVm
u,max and jVm

d,minjwith
respect to the parameters is presumably related to the

differing cross-valley momentum balances in the two

regimes: geostrophic in the upwelling regime and cy-

clostrophic in the downwelling regime (Fig. 4). But the

consistency in the changing trends of Vm
u,max and jVm

d,minj
with respect to the parameters suggests that the un-

derlying physical principle governing the valley flow in

the upwelling versus downwelling regimes are similar.

One likely underlying principle common for both re-

gimes is the conservation of potential vorticity (PV). As

the bottom friction is mostly negligible in both regimes,

it is expected that PV is conserved over the valley. PV

conservation is also consistent with the positive vorticity

being generated when the shelf flow approaches the

valley in both regimes, as described in Part I.

4. Analytical scaling

To understand the dependence of the valley flow on

the parameters, scalings of the cross-shelf flow within

the valley are derived for both the upwelling and

downwelling flow regimes. Changes of the simulated

along-valley velocity with respect to the parameters will

be used to validate the scaling analyses.

The scaling analysis is based on fivemain assumptions:

(i) geometrically long valley (Lc . Wc), (ii) equilibrium

flow state, (iii) negligible bottom friction in the valley,

(iv) shallow shelf valley with shelf flow stretching over

the entire valley water column, (v) and negligible rela-

tive vorticity on the ambient shelf. The first assumption

applies to shelf valleys that are geometrically similar to

HSV. The second assumption will be discussed in detail

in section 5. The third assumption is justified by the

momentum balance analysis in section 3c, and the fourth

assumption by the moderate Burger number considered

here. The fifth assumption is generally valid because

relative vorticity on the ambient shelf in both flow

regimes, dominated by the cross-shelf shear of the

along-shelf velocity (i.e., zs’ ›Us/›y), is always small in

magnitude. In the control case, j›Us/›yj on the ambient shelf

is about 73 1027 s21, less than 1%of the inertial frequency

f. Although it increases with wind stress, j›Us/›yj reaches
only 3 3 1026 s21, ;3% of f, at the strongest wind stress

(ts 5 0.7Nm22) used in this study.

With these assumptions, the PV conservation of the

flow moving into the valley can be expressed as follows:

f

H
s

5
f 1 z

c

H
s
1H

c

. (7)

Here,Hs is the shelf depth scale; zc5 ›V/›x2 ›U/›y, the

relative vorticity in the valley, is scaled as

z
c
’

V

L
x

2
U

L
y

; (8)

U and V are scales of the depth-averaged velocity in the

valley in the x and y direction, respectively; and Lx and

Ly are the length scales of the valley flow in the x and y

direction, respectively. Substituting (8) into (7) gives

fH
c

H
s

’
V

L
x

2
U

L
y

. (9)

From the continuity equation,

U

L
x

1
V

L
y

’ 0: (10)

Combining (9) and (10) to get a scale for the along-

valley flow gives

V’
H

c

H
s

fL
x

 
11

L2
x

L2
y

!21

. (11)
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Note that when Hc 5 0, (11) gives V 5 0, satisfying the

condition at the limit of no shelf valley.

To estimate the along-valley flow in (11), the appro-

priate length scales need to be determined. Because the

cross-shelf bathymetry of the ambient shelf is fixed in

this study, the shelf depth scaleHs does not vary. Here, it

is chosen to be the shelf depth in (5); that is, Hs 5 hf 5

75m. Note that using another constant value (e.g.,Hs 5

48.5m, the shelf depth along the valley center) does not

change the results present in this study. Because the

FIG. 5. Dependence of the modeled maximum depth-averaged up-valley and down-valley velocity on sensitivity

parameters. The solid symbols represent the control simulations, and the red and blue solid lines represent the

corresponding velocities given by the scalings in (17) and (22), respectively.
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lengths of the valleys considered in this study are all

smaller than the shelf width, the valley flows are con-

strained in the cross-shelf direction by the valley ge-

ometry. A natural choice of the cross-shelf length scale

of the valley flow is the cross-shelf length scale of the

valley bathymetry (i.e., Ly5Lc). There are three along-

shelf length scales: 1) the valley width scale Wc, 2) the

inertial length scale jUsj/f, and 3) in the upwelling regime

the wavelength of the lee wave llw. Because the flow

responses in the shallow valleys studied here are largely

barotropic with very small effect of stratification, the

influence of baroclinic Rossby radiusNHc/f on the valley

flow is presumably weak and neglected here. The O(1)

Ro implies that jUsj/f is on the same order of magnitude

as Wc. That is, the along-shelf distance over which the

flow starts to feel the rotation is close to the valley width.

The Lx is likely determined by one of the three scales

or some combination of them. Since the dynamics con-

trolling the valley flow differs in the upwelling and

downwelling regimes, Lx varies with the flow regime,

which is discussed as follows.

a. Upwelling regime

Because the persistent valleywide up-valley flow un-

der eastward wind is part of the onshore flow associated

with the stationary coastal-trapped lee wave, the along-

shelf length scale of the up-valley flow Lxu is associated

with llw, the wavelength of the lee wave. As in Part I, llw
is estimated in this study as the along-shelf distance

between the maximum and minimum of the SSH

anomaly, which is obtained by subtracting the SSH to the

far west of the valley. As described in Part I, llw is de-

termined by the intersection between the CTW dispersion

curve and the line ofv5Usk in thev–k space.Herev and

k are frequency and wavenumber, respectively. Therefore,

among the parameters considered in this study, the lee-

wave wavelength llw should depend on Us, f, and N, but

not onWc,Hc, andLc, becauseUs, f, andN affect theCTW

dispersion relationship or the v 5 Usk line, and the valley

geometry does not. The llw should also depend on ts and

Cd because they affect Us. The sensitivity simulations

confirm these parameter dependences of the modeled lee-

wave wavelength lm
lw (Fig. 6; also Fig. 13a in Part I). Note

that the dependence of lm
lw on N is weak (Fig. 6g), pre-

sumably because the moderate Burger number limits the

influence of the stratification.

Examination of the model runs indicates that Lxu also

depends on Wc, especially in the cases of a wide valley

with relatively small Ro (Fig. 10d in Part I). This is

consistent with the dynamics at the limit of Ro� 1 with

weak along-shelf flow or a wide valley. At this limit, the

lee-wave response presumably becomes weak and llw
becomes relatively small, and the along-shelf length

scale of the valley flow is determined by the other two

length scales Wc and jUsj/f. The Wc dominates the in-

fluence because Ro � 1 and jUsj/f � Wc. This is also

consistent with the combined along-shelf length scale of

the valley flow in the downwelling regime when there is

no lee wave (see section 4b). Therefore, a formulation of

the along-shelf length scale of the up-valley flow in the

upwelling regime should include the valley width influ-

ence at small Ro even though the flow is still controlled

by the lee-wave response. A sensible definition of the

along-shelf length scale is thus

L
xu
5W

c
1 l

lw
/8 . (12)

Here, the factor of 8 adjusts the lee wavelength scale to

be consistent with Wc, which is a quarter of the valley

width, as in (6).

A PV-based scaling of the up-valley flow in the up-

welling regime is then from (11):

V
u
5

H
c

H
s

fL
xu

 
11

L2
xu

L2
c

!21

. (13)

For validation, we substitute the corresponding param-

eter values and modeled lee-wave wavelength lm
lw into

(12) and (13) and obtain a scaled up-valley velocity for

each of the sensitivity simulations Vu. It is then com-

pared to the maximum depth-averaged onshore velocity

in the valley from the model Vm
u,max in both non-

dimensional and dimensional spaces (Figs. 7a,b). The

nondimensionalization is achieved through normalizing

Vu and Vm
u,max by Us. Linear regressions applied to the

scatterplots give linear fits with correlations significantly

different from zero at the 95% confidence level (all fits

shown in this work have correlation significantly dif-

ferent from zero at the 95% confidence level). The

overall R2 values of the velocity comparisons in the

nondimensional and dimensional spaces are 0.9 and

0.76, respectively. However, (13) gives an increasing Vu

with respect to Wc, which differs from the modeled

Vm
u,max, which decreases for Wc . 10km (Fig. 5c). This

discrepancy is likely caused by the fact that valley width

is not directly included in the PV dynamics (it is included

only indirectly in the formula through Lxu).

It is likely that the valley width also exerts direct in-

fluence on the up-valley flow through the establishment

of the coastal-trapped lee wave, and this effect is not

included in the PV-based derivation. To include it, we

develop a scale of the onshore velocity within the valley

based on the lee-wave dynamics following Martell and

Allen (1979).

The amplitude of the lee wave depends on the

projection of the bathymetric perturbation (the valley
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in this case) on the lee-wave waveform (Baines

1995; Brink 1986; Martell and Allen 1979). The

valley bathymetric variation in (5) in the along-shelf

direction is a Gaussian function of x; that is,

hx(x)5 exp[2(x2 x0)
2/W2

c ]. The projection of this

along-shelf bathymetric variation onto the lee-wave

waveform is its Fourier transform (Abramowitz and

Stegun 1965):

FIG. 6. Dependence of the wavelength of the coastal-trapped lee waves in the upwelling simulations (forced by

eastward winds) on the model parameters. The solid symbols represent the upwelling control simulation.
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a
lw
5

ð‘
2‘

e2(x2x0)
2/W2

c e2i(2px)/llw dx5
ffiffiffiffi
p

p
W

c
e2[(pWc)/llw]

2

.

(14)

This is essentially a resonant effect of the valley bathym-

etry. As the along-shelf length scale of the bathymetric

perturbation gets close to the length scale of the lee wave,

the lee-wave response strengthens. Following Martell and

Allen (1979) for a barotropic CTW in a channel and (14),

the scale for the sea level anomaly, which represents the

intensity of the lee wave, can be expressed as follows:

h0
u ’

ffiffiffiffi
p

p
q
H

c

H
s

f 2W
c
l
lw

2pg
e2[(pWc)/llw]

2

. (15)

Here, the nondimensional coefficient q represents the

projection of the valley cross-shelf bathymetry onto the

cross-shelf mode shape of the mode-2 CTW [see (2.14)

in Martell and Allen (1979)]. Thus, q depends on the

valley cross-shelf length scale Lc and the cross-shelf

mode shape of the coastal-trapped lee wave, which de-

pends on llw. Similar to the argument in Part I about

mode-2 CTWs dominating the lee-wave response, the

efficiency of the cross-shelf bathymetric perturbation

exciting mode-2 CTWs is determined by q. Because the

CTWmode shape does not have an analytical formula, q

cannot be derived analytically, as for alw. Here, we will

seek to formulate q by considering the condition in wide

valleys where lee-wave response is presumably weak

and the effect of PV conservation presumably domi-

nates. The along-valley velocity is obtained by assuming

the along-valley flow is geostrophic and barotropic

(Fig. 4a); that is, Vu ’h0
ug/( fLxu). The assumption of

FIG. 7. Scatterplots of the maximum onshore velocity within the valley in the upwelling simulations vs scaled along-

valley velocity in (left) nondimensional and (right) dimensional spaces. (top) The scaling is based only on potential

vorticity conservation with the lee-wave wavelength incorporated [(13)]; (bottom) the scaling is based on both potential

vorticity conservation and lee-wave dynamics and considers the influence of the valley bathymetric resonance [(17)].

Each type of symbol represents one sensitivity simulation series. The black lines are least squares fits with the corre-

sponding slope, intercept, their respective 95%confidence intervals, root-mean-square error (RMSE), andR2 given.Note

that the legend is separated into two parts, and they together apply to all panels.
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geostrophy is consistent with the along-shelf momentum

balance in the valley in the control simulation (Fig. 4a).

This gives the onshore geostrophic velocity from (15):

V
u
’

ffiffiffiffi
p

p
q
H

c

H
s

fW
c
l
lw

2pL
xu

e2[(pWc)/llw]
2

. (16)

Considering a wide valley where the effect of PV con-

servation presumably dominates and following the ex-

pression in (13), we formulate the nondimensional

coefficient, q5 (11L2
xu/L

2
c)

21. Thus,

V
u
’

ffiffiffiffi
p

p H
c

H
s

fW
c
l
lw

2pL
xu

 
11

L2
xu

L2
c

!21

e2[(pWc)/llw]
2

, (17)

and

h0
u ’

ffiffiffiffi
p

p H
c

H
s

f 2W
c
l
lw

2pg

 
11

L2
xu

L2
c

!21

e2[(pWc)/llw]
2

. (18)

Equations (17) and (18) essentially combine the PV

conservation effect and the bathymetrical resonant ef-

fect. In particular, (17) is the product of (13), (14), as

normalized by Lxu, and a length scale ratio llw/(2pLxu).

Because the along-shelf momentum balance in the up-

welling regime is largely geostrophic, the SSH anomaly,

as an indication of the intensity of the lee wave, is pro-

portional to the overall onshore transport over half of

the lee-wave wavelength. The corresponding scale for

the along-valley transport inside the valley is given by

Q
u
’

ffiffiffiffi
p

p H
c

H
s

fW2
c (Hc

1H
s
)l

lw

2pL
xu

 
11

L2
xu

L2
c

!21

e2[(pWc)/llw]
2

.

(19)

The lee-wave-based scalings are validated by com-

paring the scaled and modeled quantities (Figs. 7–9).

The modeled SSH anomaly of each sensitivity simula-

tion is chosen to be the maximum SSH anomaly at

y5252km, h0m
u,max (see Fig. 10 in Part I). The scaled h0

u

is obtained by substituting the corresponding parame-

ter values and modeled lee-wave wavelength llw into

(12) and (18). The nondimensionalization is achieved

through normalizing the modeled and scaled SSH anom-

aly by fLxuUs/g (assuming f 6¼ 0 and Us 6¼ 0). Figure 8

shows the collapse of all the SSH anomaly results around

straight lines with relatively little scatter, indicating

that (18) captures the dynamics controlling the SSH

variability associated with the lee-wave development.

As the intercepts of the least squares fits are very

small, (18) satisfies the condition at the limits of f/ 0 or

Us / 0 (i.e., llw / 0).

Values of Vu given by (17) and modeled Vm
u,max of the

sensitivity experiments align with each other very well in

both nondimensional and dimensional spaces (Figs. 7c,d).

The parameter dependences of the scaled Vu largely re-

semble the ROMS sensitivity runs (Fig. 5). In particular,

similar to the ROMS result, the dependence of Vu onWc

changes signs at Wc 5 10km. This reverse of the trend

reflects the bathymetric resonant effect, as the valley

width increases from being smaller to being greater than

the along-shelf length scale of the lee wave. The minor

discrepancies in the dependences of Vu on ts, N, and Cd

are presumably caused by the aforementioned assump-

tions employed in the scaling analysis.

The scaled transport given by (19) is compared to the

modeled onshore transport averaged over the valley

cross section at y 5 –52 km, along the center of the up-

stream anticyclonic flow anomaly (Part I). The com-

parison shows a collapse of the results around a straight

line (Fig. 9), indicating the general validity of the scaled

formula, which is essentially a modification of the PV-

based scaling to include the effects of bathymetric lee-

wave resonance. There is noticeablemisalignment of the

scaled and modeled transport, particularly for the sim-

ulations of varying valley length, which likely resulted

from the computation of the modeled transport at a

fixed cross-shelf location. In the model, there is onshore

transport on the shelf to the east of the valley (Fig. 2 in

Part I), which is about 1/3 of the onshore transport in the

valley and varies slightly among the simulations. Note

that the overall onshore transport associated with the lee

wave is proportional to the SSH anomaly.

b. Downwelling regime

For the downwelling regime there are two along-shelf

length scales to consider (since there is no lee wave), the

valley width scaleWc and the inertial length scale jUsj/f.
Because of O(1) Ro, they are of similar order of mag-

nitude. Therefore, both are expected to play roles in the

valley flow dynamics, and, presumably, the shorter one

dominates. We combine them to form an along-shelf

length scale of the downwelling valley flow as follows:

L
xd
’ c

0

(2p/4)(jU
s
j/f )W

c

W
c
1 (2p/4)jU

s
j/f ’ c

0

1

11pRo/2

p

2

jU
s
j

f
. (20)

Here, c0 is an empirical constant to be determined. We

multiply jUsj/f by 2p to convert from radians to wave-

length and then divide by 4 to make the length scale

comparable to the valley width scale [Wc ’ WT/4, as

in (6)]. For small Ro, Wc is relatively large and (20)

gives Lxd ’ pjUsj/2f; for large Ro,Wc is relatively small,

and (20) gives Lxd ’ Wc, satisfying the conditions at

both limits.
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To evaluate the scaling in (20) and associated pa-

rameter dependence, the modeled along-shelf length

scale Lm
xd from each of the downwelling simulations is

estimated from an along-shelf slice of the SSH anomaly

induced by the valley bathymetry. The slice is from day 5

at y 5 252km. As described in Part I, h0m
d is defined as

the difference between SSH everywhere and that at the

same cross-shelf location and 200 km to the east of the

valley (see Figs. 3d–f in Part I). A cosine function is fit to

each of the along-shelf slices of h0m
d , to obtain a wave-

length lm
d (Fig. 10d). The fitting is based on h0m

d,min and

the along-shelf positions of h0m
d (x)5 e21h0m

d,min. To be

consistent with the definition of Wc, we define

Lm
xd 5

lm
d

4
. (21)

Similar to the upwelling cases, the h0m
d and lm

d vary

with the model parameters. For instance, the minimum

SSH anomaly in the valley h0m
d,min increases in magnitude

with increasing ts, f, Wc (Figs. 10a–c), Hc, and Lc (not

shown), and h0m
d,min decreases in magnitude with in-

creasing N and Cd (not shown). The lm
d varies strongly

with Us, ts, f, Wc, and Cd, but not with Hc, Lc, or N

(Fig. 11). In particular, it increases with increasing jUsj,
increasing Wc, and decreasing f. The scaling in (20) is

then evaluated by comparing the scaled length scaleLxd,

with Lm
xd both normalized by pjUsj/2f in nondimensional

space (Fig. 12a). The comparison shows a clear linear

relationship between the modeled and scaled length

scale with a slope c0 5 4.9 and an intercept b0 5 0.38.

Applying c0 and b0 in the scaled wavelength gives a nearly

one-to-one alignment with the modeled wavelength in the

dimensional space (Figs. 11 and 12b). The comparisons

indicate that (20) represents the along-shelf length scale of

the sea level anomaly in the downwelling regime very well.

The scale of the along-valley flow in the downwelling

regime is based only on the PV conservation [i.e., (11)]

because there is no other mechanism controlling the

valley flow. Replacing Lx in (11) with Lxd gives the

formula for the scaled down-valley flow:

jV
d
j’H

c

H
s

 
11

L2
xd

L2
c

!21

fL
xd
. (22)

FIG. 8. Scatterplots of maximum SSH anomaly associated with the modeled coastal-trapped lee waves in the

upwelling simulations vs scaled SSH anomaly in (left) nondimensional and (right) dimensional spaces. Each type of

symbol represents one sensitivity simulation series. The black lines are least squares fits with the corresponding

slope, intercept, their respective 95% confidence intervals, RMSE, and R2 given in each panel.

FIG. 9. A scatterplot of modeled vs scaled up-valley transport.

The black line is a least squares fit with the corresponding slope,

intercept, their respective 95% confidence intervals, RMSE, and

R2 given.
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Here the effect of the valley width is embedded in Lxd.

Note that (22) describes the down-valley flow on the

western valley slope, not the net down-valley flow over

the entire valley cross section. For validation, scaled

along-valley velocity using (22) is compared to the

minimum down-valley velocity (maximum speed) on

the western slope of the valley Vm
d,min (Figs. 5 and 13).

The general alignment of the results in both non-

dimensional and dimensional spaces indicates that the

velocity scale in (22) agrees with the model result and

that PV-based velocity scaling captures the dynamics of

the valley detour flow in the downwelling regime.

As depicted in section 3c, the along-shelf momentum

balance on the western valley slope in the downwelling

regime is largely cyclostrophic, not geostrophic (Fig. 4e).

For completeness, we nevertheless derive a scale of the

SSH anomaly based on (22) and assuming the along-

valley flow is geostrophic:

jh0
dj’

f jV
d
jL

xd

g
5

H
c

H
s

 
11

L2
xd

L2
c

!21
f 2L2

xd

g
. (23)

We do not expect (23) to represent the modeled SSH

anomaly accurately. The scaled h0
d does not align with

h0m
d,min in the nondimensional space (Fig. 14a) as well as

the velocity scaling (Fig. 13a), but the R2 is 0.81. In-

terestingly, the comparison of h0
d and h0m

d,min in di-

mensional space is better with the R2 of 0.86 (Fig. 14b).

A scale of the down-valley transport on the western

slope of the valley can then be derived based on (22):

jQ
d
j’ jV

d
j(H

c
1H

s
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H

c
(H

c
1H

s
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H
s

 
11
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xd

L2
c

!21

fW
c
L

xd
. (24)

The scaled along-valley transport generally aligns with

the modeled down-valley transport on the western val-

ley slope and the corresponding R2 of 0.90 (Fig. 15).

The minor discrepancies in the scaled versus modeled

transport for Hc and Wc are likely related to the simple

along-shelf and vertical length scales used in (24) to

compute the transport from the velocity. Note that the

discrepancies are much smaller in the dimensional

FIG. 10. Along-shelf section of the SSH anomaly h0m
d at y5252 km and t5 5 days from downwelling simulations

of different (a) wind strength, (b) Coriolis and (c) valley width, and (d) an example of a cosine curve (magenta line)

over the valley with a wavelength of lm
d fitting the h0m

d curve. The black line in each panel is from the downwelling

control simulation.
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velocity scaling (Fig. 13b). Equation (24) also provides a

reasonable estimate of the up-valley transport on the

eastern slope of the valley (not shown).

Overall, the scaling analysis presented here captures

the main dynamics of the simulated onshore detour flow

over the valley in the downwelling regime. The scaling

FIG. 11. Dependence of the wavelength of the onshore detour flow on the model parameters in the downwelling

simulations. The solid symbols represent the downwelling control simulation, and the solid lines are the scaled

wavelength based on (20) and (21).
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analysis in this downwelling regime is based on PV

conservation and the along-shelf length scale combining

the valley width and the flow inertial length scale jUsj/f.

5. Discussion

a. Comparison with other studies

The up-valley transport scale derived in this study,

(22), cannot be directly compared to (3) and (4) for two

reasons. First, the shallow valleys in this study occupy a

different part of the parameter space than the slope

canyons studied by Allen and Hickey (2010) and Kämpf

(2007), particularly as characterized by S. Although the

fundamental physics of arresting CTWs and generating

persistent onshore flow should apply to slope canyons,

the parameter dependence of the onshore flow is likely

to differ because of the changes in the geometry and

cross-shelf location of the bathymetrical perturbation.

Second, (22) applies to the onshore transport over the

entire valley water column, which is different from the

onshore transport of offshore subsurface water consid-

ered in Allen and Hickey (2010) and Kämpf (2007).

Because of the strong influence of stratification, the

onshore transport in slope canyons is often confined to

only a part of the water column. Both the Allen and

Hickey (2010) and Kämpf (2007) studies treated the

shelfbreak rim as a vertical separation and defined up-

welling as the onshore motion of the offshore water

below the shelfbreak rim. In a shallow shelf valley, the

FIG. 12. Scatterplots of the along-shelf length scale of the valley flow detour in the downwelling simulations vs the

scaled along-shelf length scale in (a) nondimensional and (b) dimensional spaces. Note that the slope c0 and

intercept b0 in (a) are used in the dimensional length scale formula in (b). Each type of symbol represents one

sensitivity simulation series. The black line in (a) is a least squares fit with corresponding slope, intercept, their

respective 95% confidence intervals, RMSE, andR2 given; the black line in (b) is a one-to-one diagonal line, and the

corresponding RMSE and R2 of the symbols relative to the diagonal line are also given.

FIG. 13. Scatterplots of the maximum down-valley velocity in the downwelling simulations vs the scaled along-

valley velocity in (a) nondimensional and (b) dimensional spaces. Each type of symbol represents one sensitivity

simulation series. The black lines are least squares fits with the corresponding slope, intercept, their respective 95%

confidence intervals, RMSE, and R2 given in each panel.
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onshore motion spans the entire water column and there

is no obvious separation in the vertical direction that can

be used to divide the water column. A related aspect is

the likely stronger influence ofN in slope canyons, which

may cause the baroclinic Rossby radius to be an im-

portant length scale in determining the canyon flow.

Because of the weak influence of N in the shelf valleys

considered here, the baroclinic Rossby radius does not

play a major role, and its influence is not considered in

the scaling analysis.

Nevertheless, one noticeable difference between (22)

and (3) or (4) is in the application to an unstratified water

column: (22) is perfectly applicable to unstratified condi-

tions. The unstratified ROMS simulations give flow pat-

terns and along-valley velocity similar to those in the

corresponding control simulations (Figs. 5g,h), meaning

the initial stratification does not substantially affect the

depth-averaged valley flow in the cases studied here.

As discussed in Part I, the bathymetrical differences

also cause the CTWs to be excited at slope canyons

likely having different mode shape from those in shelf

valleys. Therefore, (22) is unsuitable for slope canyons.

This calls for numerical and observational studies of the

canyon/valley flow over a broader parameter space. This

work establishes a framework for such a study. How-

ever, as flow characteristics often vary with parameters,

tackling the issuemay require additional considerations,

such as including the baroclinic Rossby radius as a

length scale in determining the canyon flow.

b. Applicability of scalings

The scalings developed here are expected to be appli-

cable to cross-shelf-oriented shelf valleys with geometric

shape similar to the HSV and in the parameter space of

O(1) Ro, moderate (less than 2) S, and negligible bottom

friction, as covered by the sensitivity simulations. How-

ever, the assumptions employed in the scaling analysis and

the model simulations can also affect the applicability.

While the exact influences of the assumptions remain to be

investigated, we here discuss two issues related to the as-

sumptions to point out specific topics for future studies.

First, this study assumes that the shelf flow is com-

pletely driven by the local wind and there is no background

flow. In the real ocean, there are often background flows

FIG. 14. Scatterplots of the minimum SSH anomaly in the valley resolved by the downwelling simulations vs the

scaled SSH anomaly in (a) nondimensional and (b) dimensional spaces. Each type of symbol represents one sen-

sitivity simulation series. The black lines are least squares fits with the corresponding slope, intercept, their re-

spective 95% confidence intervals, RMSE, and R2 given in each panel.

FIG. 15. A scatterplot of the down-valley transport on the eastern

valley slope resolved by the downwelling simulations vs the scaled

along-valley transport. The black line is a least squares fit with the

corresponding slope, intercept, their respective 95% confidence

intervals, RMSE, and R2 given.
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on continental shelves, driven by local buoyancy or off-

shore forcing. For instance, there is a persistent south-

westward mean flow on the Mid-Atlantic Bight shelf

(Lentz 2008a,b). It is obvious that the background shelf

flow can also induce cross-shelf flow in a valley andmodify

the wind response. The fundamental mechanism leading

to the asymmetrical valley flow should be the same

whether the shelf flow is wind driven or is an ambient shelf

flow forced by some other process. However, the back-

ground shelf flow may have a complex cross-shelf or ver-

tical structure, which might alter the details of the valley

response. For instance, if themean flow is strongly sheared

in the cross-shelf direction, the associated relative vorticity

may break the assumption of weak background relative

vorticity and modify the PV dynamics. Hence, the valley

flow response to a background shelf flow will depend on

the specific shelf condition, and how it modifies the wind

response is a question that remains to be answered.

Second, vertically uniform stratification is used in the

scaling analysis and model initial conditions. This is not

expected to be a major issue for the shallow shelf valleys

considered here because of the moderate S. In addition,

vertical mixing quickly changes the vertical distribution

of the model stratification and generates surface and

bottom mixed layers similar to conditions on many

shelves (Figs. 4–6 in Part I). Test simulations with ver-

tically varying initial stratification (typical thermocline

structure) give depth-averaged flow patterns very simi-

lar to the control simulations (not shown). However, the

model results show that the vertical structure of

the along-valley flow is sensitive to the stratification in

the valley. In particular, the near-bottom intensification

of the up- and down-valley flow, as observed in HSV

(Lentz et al. 2014), is directly affected by the stratifica-

tion in the valley. This will be the subject of a follow-

up paper.

Last, this study focuses on the quasi-steady valley flow

response rather than the initial transient response. In the

control simulations, the adjustment to equilibrium takes

1–2 days (Fig. 4), and the valley responses to along-shelf

flows in opposite directions are more symmetrical in the

transient state. In particular, the simulation forced by

westward wind gives a significant offshore flow on the

valley axis in the first day (Fig. 7b in Part I). This is the

flow response to the bathymetric perturbation before

the initial disturbance radiates away. The increased

water depth at the valley generates an excessive offshore

pressure gradient force, which drives an initial offshore

flow before the along-shelf advection term becomes

significant (Fig. 4d). So in the real ocean, it is still pos-

sible to generate significant short-lived down-valley

transport, for instance during sudden bursts of winds in

the same direction as the CTW propagation. Because

winds always fluctuate, it is necessary to consider this

transient down-valley transport when studying the wind-

driven cross-shelf exchange at a real shelf valley.

6. Summary

In this second part of the study, we focus on the wind-

driven cross-shelf flow in shallow shelf valleys and the

associated dynamics. The parameter space of interest is

characterized by order-one Rossby number and small to

moderate Burger number. Numerical simulations forced

bywinds of different directions show that the along-shelf

component of the wind forcing dictates the flow re-

sponse in the valley and that the contribution of the

cross-shelf wind component is negligible. Consequently,

the subsequent analysis focuses on the valley flow driven

by along-shelf winds.

Part I of the study shows that the valley flow responds

differently to the along-shelf winds of opposite di-

rections. When the wind is in the direction opposite to

the phase propagation of CTWs, a strong persistent

onshore upwelling flow is generated in the valley as a

result of CTWs being generated at the valley and then

arrested by the shelf flow (i.e., a lee wave induced by the

valley bathymetric perturbation). When the wind is in

the same direction as the CTW phase propagation, the

flow disturbance induced by the valley bathymetry

propagates away, and the shelf flow adjusts to the ba-

thymetry. The adjustment results in an up-valley flow on

the eastern valley slope and a down-valley flow on the

western slope. Together they form a symmetric flow

pattern with a very weak offshore transport averaged

over the valley cross section. In this paper, the dynamics

that control the along-valley flow in both regimes are

examined. The different valley flow responses to oppo-

site along-shelf winds likely result in net up-valley

transport of heat and salt and contribute to the cross-

shelf heat and salt balance. To help quantify those, we

develop scales for the along-valley flows and transports

in each flow regime and compare them to results of the

numerical sensitivity simulations.

In both flow regimes, potential vorticity (PV) conser-

vation of the flow over the valley is assumed and used as

the basis of the scaling analysis. The along-shelf length

scale associated with the valley flow differs in the up-

welling and downwelling regimes. In the upwelling re-

gime, because the up-valley flow is influenced by the

arrested CTWs, its along-shelf length scale is associated

with the wavelength of the coastal-trapped lee wave. At

the same time, the valley width scale Wc also affects the

along-shelf length scale when Ro � 1 and the lee-wave

response is weak. In the downwelling regime, because the

Rossby number of the valley flow isO(1),Wc and the flow

APRIL 2018 ZHANG AND LENTZ 901



TABLE A1. List of notations.

Variable Meaning First appearance

a An empirical constant (4)

alw Fourier projection of the along-shelf bathymetric variation onto the lee-wave waveform (14)

Cd Coefficient of the quadratic bottom drag Section 2

b0 Intercept of the downwelling length scaling fitting Section 4

c0 Slope of the downwelling length scaling fitting Section 4

c1, c2 Empirical constants Section 1

cr Empirical constant Section 4

F An intermediate variable (3)

f Coriolis parameter (1)

f0 An empirical Coriolis constant (4)

Hc Valley depth relative to the neighboring shelf (2)

Hs Shelf depth scale (7)

Hsc Depth of a slope canyon (4)

ha Model bathymetry (5)

hc Depth on the coast (5)

hf Shelf depth scale (5)

hp Slope vertical scale (5)

hx Along-shelf bathymetric variation of the valley Section 4

k Wavenumber Section 4

Lc Valley length scale in cross-shelf direction (2)

Lsc Cross-shelf length of a slope canyon (3)

Lx, Ly Length scales in the valley flow (8)

Lxd Along-shelf scale of the valley flow in the downwelling regime (20)

Lm
xd Modeled along-shelf scale of the valley flow in the downwelling regime (21)

Lxu Along-shelf scale of the valley flow in the upwelling regime (8)

lf Shelf width scale (5)

lp Slope width scale (5)

N Buoyancy frequency (2)

q A nondimensional coefficient describing the projection of the valley

cross-shelf bathymetry onto the lee-wave mode shape

(15)

Qu Onshore volume transport within a shelf valley or canyon in the upwelling regime (3)

Qd Offshore volume transport on the western valley slope in the downwelling regime (20)

Rc Radius of curvature of the shelfbreak isobath at the upstream corner of a slope canyon Section 1

Ro Rossby number of the valley flow (1)

Ror Rossby number of the canyon flow defined based on Rc Section 1

(U, V) Depth-averaged valley flow (8)

Us Depth- and cross-shelf-averaged along-shelf flow (1)

Usb Along-slope velocity (3)

Vd Scaled down-valley velocity in the downwelling regime Section 4

Vm
d,min Modeled minimum down-valley velocity in the downwelling regime Section 3b

Vu Scaled up-valley velocity in the upwelling regime Section 4

Vm
u,max Modeled maximum up-valley velocity (maximum speed) in the upwelling regime Section 3b

Wc Valley width scale in along-shelf direction (1)

Wsb Canyon width at the shelf break (3)

WT The total width of the valley Section 2

(x0, y0) Coordinate of the valley center (5)

yp y coordinate of the center of the slope (5)

zc Relative vorticity of the valley flow (7)

zs Relative vorticity of the ambient shelf flow Section 4

h0
d SSH anomaly in the downwelling regime (23)

h0m
d Modeled SSH anomaly in the downwelling regime Section 4

h0m
d,min Modeled minimum SSH anomaly in the downwelling regime Section 4

h0
u SSH anomaly in the upwelling regime (16)

h0m
u Modeled SSH anomaly in the upwelling regime Section 4

h0m
u,max Modeled maximum SSH anomaly in the upwelling regime Section 4

ld Along-shelf wavelength of the valley flow in the downwelling regime Section 4

lm
d Modeled along-shelf wavelength of the valley flow in the downwelling regime Section 4

llw Along-shelf wavelength of the coastal-trapped lee wave Section 4

lm
lw Modeled along-shelf wavelength of the coastal-trapped lee wave Section 4

ts Surface wind stress Section 2

v Wave frequency Section 4
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inertial length scale jUsj/f are the same order of magni-

tude. The along-shelf length scale of the valley flow is

thus a combination ofWc and jUsj/f. This difference in the
flow length scales is one of the primary reasons that the

along-valley flows in the upwelling and downwelling re-

gimes are influenced by parameters in different ways.

In the upwelling regime, the up-valley flow is also

affected by the lee-wave bathymetric resonance. Con-

sidering PV conservation and the lee-wave dynamics

yields a scale of the onshore velocity within the valley

[(17)] with good agreement with results of the sensitivity

simulations. Scales of the up-valley transport and the

SSH anomaly of the upstreammeander are also derived,

in (19) and (18), respectively.

In the downwelling regime, to be more relevant to

observational studies, we consider the down-valley flow

on the western slope of the valley, as the cross-valley-

averaged down-valley flow is very weak. Combining Wc

and jUsj/f, we obtain an along-shelf length scale of the

valley flow in (20), Lxd 5 (11pRo/2)21pjUsj/2f, and
derive scales of the down-valley velocity and transport

[(22) and (24)]. The sensitivity simulations validate the

scaled formulas as they give values of the maximum

down-valley velocity and down-valley transport aligning

well with the scale estimates.

The analytical scalings presented here are based

on several assumptions that may affect the applicability

of the results. For instance, we neglect the background

along-shelf flow that might modify the wind-driven

valley response. The transient responses of the valley

flow to the winds in the short initial stage are more

symmetric with respect to the wind direction. This study

also provides a framework for investigating cross-shelf

flows induced by irregular shelf bathymetry over a

broader parameter space. It is particularly important in

future studies to include complex environmental con-

ditions and to cover the ubiquitous slope canyons that

occupy a different part of the parameter space than the

shelf valleys considered in this study.

Acknowledgments. Both WGZ and SJL were sup-

ported by the National Science Foundation (NSF)

throughGrant OCE 1154575.WGZ is also supported by

the NSF Grant OCE 1634965 and SJL by NSF Grant

OCE 1558874.

APPENDIX

Notation

Table A1 provides a list of notations and their

meanings and indicates where each first appears.
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