7 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    A nomogram to predict postoperative pulmonary complications after cardiothoracic surgery.

    No full text
    OBJECTIVE: The objective was to develop a novel scoring system that would be predictive of postoperative pulmonary complications in critically ill patients after cardiac and major vascular surgery. METHODS: A total of 17,433 postoperative patients after coronary artery bypass graft, valve, or thoracic aorta repair surgery admitted to the cardiovascular intensive care units at Cleveland Clinic Main Campus from 2009 to 2015. The primary outcome was the composite of postoperative pulmonary complications, including pneumonia, prolonged postoperative mechanical ventilation (\u3e48 hours), or reintubation occurring during the hospital stay. Elastic net logistic regression was used on the training subset to build a prediction model that included perioperative predictors. Five-fold cross-validation was used to select an appropriate subset of the predictors. The predictive efficacy was assessed with calibration and discrimination statistics. Post hoc, of 13,353 adult patients, we tested the clinical usefulness of our risk prediction model on 12,956 patients who underwent surgery from 2015 to 2019. RESULTS: Postoperative pulmonary complications were observed in 1669 patients (9.6%). A prediction model that included baseline and demographic risk factors along with perioperative predictors had a C-statistic of 0.87 (95% confidence interval, 0.86-0.88), with a corrected Brier score of 0.06. Our prediction model maintains satisfactory discrimination (C-statistics of 0.87) and calibration (Brier score of 0.07) abilities when evaluated on an independent dataset of 12,843 recent adult patients who underwent cardiovascular surgery. CONCLUSIONS: A novel prediction nomogram accurately predicted postoperative pulmonary complications after major cardiac and vascular surgery. Intensivists may use these predictors to allow for proactive and preventative interventions in this patient population
    corecore