247 research outputs found
The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases
The interplay of enzyme active site electrostatics and chemical positioning is important for understanding the origin(s) of enzyme catalysis and the design of novel catalysts. We reconstruct the evolutionary trajectory of TEM-1 β-lactamase to TEM-52 toward extended-spectrum activity to better understand the emergence of antibiotic resistance and to provide insights into the structure–function paradigm and noncovalent interactions involved in catalysis. Utilizing a detailed kinetic analysis and the vibrational Stark effect, we quantify the changes in rates and electric fields in the Michaelis and acyl-enzyme complexes for penicillin G and cefotaxime to ascertain the evolutionary role of electric fields to modulate function. These data are combined with MD simulations to interpret and quantify the substrate-dependent structural changes during evolution. We observe that this evolutionary trajectory utilizes a large preorganized electric field and substrate-dependent chemical positioning to facilitate catalysis. This governs the evolvability, substrate promiscuity, and protein fitness landscape in TEM β-lactamase antibiotic resistance
DNA-Machinery for Delivering Membrane Proteins into Free Standing Lipid Bilayers
Digitalitzat per Artypla
Critical Evaluation of Polarizable and Nonpolarizable Force Fields for Proteins Using Experimentally Derived Nitrile Electric Fields
Molecular dynamics (MD) simulations are frequently carried out for proteins to investigate the role of electrostatics in their biological function. The choice of force field (FF) can significantly alter the MD results, as the simulated local electrostatic interactions lack benchmarking in the absence of appropriate experimental methods. We recently reported that the transition dipole moment (TDM) of the popular nitrile vibrational probe varies linearly with the environmental electric field, overcoming well-known hydrogen bonding (H-bonding) issues for the nitrile frequency and, thus, enabling the unambiguous measurement of electric fields in proteins (J. Am. Chem. Soc. 2022, 144 (17), 7562–7567). Herein, we utilize this new strategy to enable comparisons of experimental and simulated electric fields in protein environments. Specifically, previously determined TDM electric fields exerted onto nitrile-containing o-cyanophenylalanine residues in photoactive yellow protein are compared with MD electric fields from the fixed-charge AMBER FF and the polarizable AMOEBA FF. We observe that the electric field distributions for H-bonding nitriles are substantially affected by the choice of FF. As such, AMBER underestimates electric fields for nitriles experiencing moderate field strengths; in contrast, AMOEBA robustly recapitulates the TDM electric fields. The FF dependence of the electric fields can be partly explained by the presence of additional negative charge density along the nitrile bond axis in AMOEBA, which is due to the inclusion of higher-order multipole parameters; this, in turn, begets more head-on nitrile H-bonds. We conclude by discussing the implications of the FF dependence for the simulation of nitriles and proteins in general
Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain
Background Biological pathways that significantly contribute to sporadic
Alzheimer’s disease are largely unknown and cannot be observed directly.
Cognitive symptoms appear only decades after the molecular disease onset,
further complicating analyses. As a consequence, molecular research is often
restricted to late-stage post-mortem studies of brain tissue. However, the
disease process is expected to trigger numerous cellular signaling pathways
and modulate the local and systemic environment, and resulting changes in
secreted signaling molecules carry information about otherwise inaccessible
pathological processes. Results To access this information we probed relative
levels of close to 600 secreted signaling proteins from patients’ blood
samples using antibody microarrays and mapped disease-specific molecular
networks. Using these networks as seeds we then employed independent genome
and transcriptome data sets to corroborate potential pathogenic pathways.
Conclusions We identified Growth-Differentiation Factor (GDF) signaling as a
novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro
follow-up experiments, demonstrating the existence of a highly informative
link between cellular pathology and changes in circulatory signaling proteins
Network-Driven Plasma Proteomics Expose Molecular Changes in the Alzheimer\u27s Brain
Background: Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes. Results: To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential pathogenic pathways. Conclusions: We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly informative link between cellular pathology and changes in circulatory signaling proteins
- …